Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
\(A=-4x^2-5y^2+8xy+10y+12\)
\(-A=4x^2+5y^2-8xy-10y-12\)
\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)
\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)
Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)
\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-A\ge-\frac{73}{4}\)
\(\Leftrightarrow A\le\frac{73}{4}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)
Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)
\(A=3x^2+4y^2+4xy+2x-4y+26\)
\(=4y^2+\left(4xy-4y\right)+\left[\left(x-1\right)^2-\left(x-1\right)^2\right]+3x^2+2x+26\)
\(=\left[\left(2y^2\right)+4y\left(x-1\right)+\left(x-1\right)^2\right]-\left(x^2-2x+1\right)+3x^2+2x+26\)
\(=\left(2y+x-1\right)^2+2x^2+4x+25=\left(2y+x-1\right)^2+2\left(x^2+2x+1\right)+23\)
\(=\left(2y+x-1\right)^2+2\left(x+1\right)^2+23\ge23\) với mọi x,y thuộc R.
Đẳng thức xảy ra \(\Leftrightarrow\begin{cases}2y+x+1=0\\x+1=0\end{cases}\Leftrightarrow\begin{cases}x=-1\\y=1\end{cases}\)
Vậy \(A_{min}=23\) khi x=-1 và y=1
a, \(P=2x^2+5y^2+4xy+8x-4y+15\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)
Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)
Vậy...
b, \(C=2x^2+4xy+4y^2-3x-1\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
sau đó giải tương tự câu a nhé
\(C=3x^2+5y^2-6x-3\)
\(=3\left(x^2-2x+1-2\right)+5y^2\)
\(=3\left(x-1\right)^2+5y^2-6\ge-6\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}}\)
vậy........
C = 3x2 + 5y2 - 6x - 3
= ( 3x2 - 6x + 3 ) + 5y2 - 6
= 3( x2 - 2x + 1 ) + 5y2 - 6
= 3( x - 1 )2 + 5y2 - 6 ≥ -6 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 0
=> MinC = -6 <=> x = 1 ; y = 0
\(H=x^2+xy+y^2-3x-3y\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(=\left[\left(x-1\right)^2+2.\frac{1}{2}.\left(x-1\right)\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2-3\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\)
Vì \(\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\forall x;y\) có GTNN là - 3
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(H_{min}=-3\) tại \(x=1;y=1\)
\(H=3x^2+4y^2-4xy-3x-5\)
\(=x^2-4xy+4y^2+2x^2-3x-5\)\
\(=x^2-4xy+4y^2+2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{49}{8}\)
\(=\left(x-2y\right)^2+2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\ge\frac{-49}{8}\)
Dấu \(=\)khi \(\hept{\begin{cases}x-2y=0\\x-\frac{3}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{8}\\x=\frac{3}{4}\end{cases}}\). Vậy \(minH=\frac{-49}{8}\)
H = 3x2 + 4y2 - 4xy - 3x - 5
H = (x2 - 4xy + 4y2) + 2(x2 - 3/2x + 9/16) - 49/8
H = (x - 2y)2 + 2(x - 3/4)2 - 49/8 \(\ge\)-49/8 với mọi x
Dấu "=" xảy ra <=> x - 2y = 0 và x - 3/4 = 0
<=> x = 3/4 và y = 3/8
Vậy MinH = -49/8 <=> x = 3/4 và y = 3/8