K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(A=2x^2+y^2+4x-2xy\)

\(=\left(x^2+4x+4\right)+\left(x^2-2xy+y^2\right)-4\)

\(=\left(x+2\right)^2+\left(x-y\right)^2-4\ge-4\)

Vậy MIN \(A=-4\)khi   \(x=y=-2\)

6 tháng 8 2018

A= (x2-2xy+y2) +( x2+4x+22) -4

A= (x-y)2+(x+2)2-4

Vì (x-y)2+(x+2)2 >= 0

=> A >= -4

Min a = -4 <=> x=-2=y

31 tháng 7 2019

\(A=\left(x+1\right)^2+\left(x+2\right)^2=\left(x+1\right)^2+\left(-2-x\right)^2\ge\frac{1}{2}\left(x+1-2-x\right)^2=\frac{1}{2}.1^2=\frac{1}{2}\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)

\(B=-2x^2-4\le0-4=-4\Rightarrow B_{max}=-4\Leftrightarrow x=0\)

\(C=-5x^2+10x-7=-5x^2+10x-5-2=-5\left(x-1\right)^2-2\le0-2=-2\Rightarrow C_{min}=-2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

30 tháng 7 2018

a) A= -x2 + 6x -10

       = -(x2 - 6x) -10

       =  -(x2 - 2. x .3 +32 -9)- 10

      = -( x-3 )2  +9 -10 

      = - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x

       Dấu '' = '' xảy ra khi và chỉ khi

               x-3 =0

               \(\Leftrightarrow\)x=3

Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3

CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ

b) B= -2x2-4x-10

        = -2(x2+ 2x ) -10

        = -2 (x2 +2x+12 -1)-10

         =-2(x+1)2 +2 -10

        =-2(x+1)2 -8  \(\le\)-8 với mọi giá trị của x

Dấu " ='' xảy ra khi và chỉ khi

        x+1=0

............................

c) C= -2x2 +3x -10

       = -2(x2 -\(\frac{3}{2}\)x) -10

       = -2( x2 - 2.x.\(\frac{3}{4}\)\(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10

       = -2(x-\(\frac{3}{4}\))+\(\frac{9}{8}\)-10

        =-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x

Dấu  bằng ''='' xảy ra khi và chi khi  

     x-\(\frac{3}{4}\)=0

   .......................................................

d)  D= -x2 -y2+2x-4y -10

          =(-x2+2x) +( -y2 -4y) -10

          = -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10 

          =-(x-1)2 +1  -(y+2)2 +4 -10

           =-(x-1)2 - (y+2)2 -5   \(\le\)5  với mọi giá tri của x

Dấu '' ='' xảy ra khi và chỉ khi  

\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

......................................................

e) XIN LỖI TỚ CHƯA NGHĨ RA

                          

       

10 tháng 9 2018

a) \(x^2-2x=24\)

\(\Rightarrow x^2-2x-24=0\)

\(\Rightarrow x^2-6x+4x-24=0\)

\(\Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Rightarrow\left(x-6\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\)

\(\Rightarrow\left(5-2x\right)^2-4^2=0\)

\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)

\(\Rightarrow\left(1-2x\right)\left(9-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\9-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c)Sửa đề

\(x^2-4x+4-9x^2+6x-1=0\)

\(\Rightarrow\left(x^2-4x+4\right)-\left(9x^2-6x+1\right)=0\)

\(\Rightarrow\left(x-2\right)^2-\left(3x-1\right)^2=0\)

\(\Rightarrow\left(x-2-3x+1\right)\left(x-2+3x-1\right)=0\)

\(\Rightarrow\left(-2x-1\right)\left(4x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-2x-1=0\\4x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2x=1\\4x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

d) \(2x^2+y^2+2xy-4x+4=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2\ge0\) với mọi x và y

\(\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

18 tháng 7 2017

A=\(x^2+y^2-4x+2y+6\)

=\(x^2-4x+4+y^2+2y+1+1\)

=\(\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\)

Vậy Amin =1 \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

22 tháng 6 2015

b, (a+b) ^3 - ( a - b)^3- 2 b^3

= ( a +b -a +b) [ ( a+ b)^2 + (a+b)(a-b) + (a-b)^2]  - 2b^3

= 2b( a^2 + 2ab+ b^2 + a^2 - b^2 + a^2 - 2ab+ b^2 ) - 2b^3

= 2b (  3 a^2 + b^2) - 2b^3

= 2b ( 3a^2 + b^2 - b^2)

= 2b.3a^2

=6a^2b