Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
G = x2 - 3x + 5
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinG = 11/4 <=> x = 3/2
H = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinH = 5 <=> x = 0
I = x2 - 2x + y2 - 4y + 10
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 5
= ( x - 1 )2 + ( y - 2 )2 + 5 ≥ 5 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
=> MinI = 5 <=> x = 1 ; y = 2
K = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2 ≥ 2 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinK = 2 <=> x = y = -1/2
E = 2x2 + y2 + 2xy - 4x + 14
= ( x2 + 2xy + y2 ) + ( x2 - 4x + 4 ) + 10
= ( x + y )2 + ( x - 2 )2 + 10 ≥ 10 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)
=> MinE = 10 <=> x = 2 ; y = -2
a)x2-4x+5+y2+2y=x2-4x+4+y2+2y+1=(x-2)2+(y+1)2
b)2x2+y2-2xy+10x+25=x2-2xy+y2+x2+10x+25=(X+Y)2+(X+5)2
c)a2+2ab+5b2+4b+1=a2+2ab+b2+4b2+4b+1=(a+b)2+(2b+1)2
d)2x2+2b2+4x+4b+4=2x2+4x+2+2b2+4b+2=(\(\sqrt{2}x+\sqrt{2}\))2+(\(\sqrt{2}b+\sqrt{2}\))2
e)X4+13-6x2+4y+y2=x4-6x2+9+y2+4y+4=(x2-3)2+(y+2)2
f)-6x+9x2-8y+4y+y2+5= 9x2-6x+1+4y2-8y+4= (3x-1)2+(2y-2)2