Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
trước tiên bạn nên đưa về dạng tổng hai bình phương
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
Câu này mình làm rồi, cần 2 câu trên thôi. Mk có cách giải khác ngắn hơn nhiều