Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(I=2011.\left|2x-4\right|+2012.\left(y+1\right)^2+\left(-1\right)\\ +Có:\left|2x-4\right|\ge0với\forall x\Rightarrow2011.\left|2x-4\right|\ge0\\ \left(y+1\right)^2\ge0với\forall y\Rightarrow2012.\left(y+1\right)^2\ge0\\ \Rightarrow2011.\left|2x-4\right|+2012.\left(y+1\right)^2+\left(-1\right)\ge-1\\ \Leftrightarrow I\ge-1\\ +dấu"="xảyrakhi\\ \Rightarrow\left\{{}\begin{matrix}\left|2x-4\right|=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
vậy Imin= -1 khi x = 2, y = -1
a) \(I=2011\cdot\left|2x-4\right|+2012\cdot\left(y+1\right)^2+\left(-1\right)\)
Có: \(\left|2x-4\right|\ge0\forall x\Rightarrow2011\cdot\left|2x-4\right|\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\Rightarrow2012\cdot\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2011\cdot\left|2x-4\right|+2012\cdot\left(y+1\right)^2\ge0\forall x;y\)
\(\Rightarrow2011\cdot\left|2x-4\right|+2012\cdot\left(y+1\right)^2+\left(-1\right)\ge0+\left(-1\right)\forall x;y\\ \Rightarrow I\ge-1\forall x;y\\ \Rightarrow I_{min}=-1\)
\("="\Leftrightarrow\left\{{}\begin{matrix}\left|2x-4\right|=0\\\left(y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-4=0\\y+1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
1.
a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:
12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d. Vậy d =1 hoặc d = -1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)
1. a, 3x + 2 \(⋮2x-1\)
Có 3(2x - 1) \(⋮2x-1\)
Và 2(3x - 2) \(⋮2x-1\)
=> 6x - 4 - 6x + 3 \(⋮2x-1\)
<=> -1 \(⋮2x-1\)
=> 2x - 1 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> 2x = 2; 0
=> x = 1; 0 (thỏa mãn)
@Lớp 6B Đoàn Kết
1. b, x2 - 2x + 3 \(⋮x-1\)
<=> x(x - 2) + 3 \(⋮x-1\)
<=> x(x - 1) - x + 3 \(⋮x-1\)
<=> x(x - 1) - (x - 1) - 2 \(⋮x-1\)
<=> (x - 1)2 - 2 \(⋮x-1\)
<=> -2 \(⋮x-1\)
=> x - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> x = 2; 0; 3; -1 (thỏa mãn)
@Lớp 6B Đoàn Kết
P nhỏ nhất khi x2 + 3x + 10 lớn nhất
Ta có: \(x^2+3x+10=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)không có GTLN
=> P không có GTNN
P lớn nhất khi x2 + 3x + 10 nhỏ nhất
<=> \(\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\text{ nhỏ nhất }\left(=\frac{31}{4}\right)\)
<=> x + 3/2 = 0
<=> x = -3/2
=> GTLN của P là -20/31 <=> x = -3/2
*Giải theo cách lp 8*
a;MinB= -5 khi và chỉ khi x=1 b;MaxB=1975 khi và chỉ khi x=3/2