K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2020

\(y=\left(1-cos^2x\right)^2+cos^2x-5\)

\(y=cos^4x-cos^2x-4\)

\(y=\left(cos^2x-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

\(y_{min}=-\frac{17}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=cos^2x\left(cos^2x-1\right)-4=-cos^2x.sin^2x-4=-\frac{1}{4}sin^22x-4\)

Do \(-\frac{1}{4}sin^22x\le0\Rightarrow y\le-4\)

\(y_{max}=-4\) khi \(sin2x=0\)

NV
16 tháng 9 2020

\(y=sinx.cosx\left(sin^2x-cos^2x\right)=\frac{1}{2}sin2x.\left(-cos2x\right)=-\frac{1}{4}sin4x\)

Do \(-1\le sin4x\le1\Rightarrow-\frac{1}{4}\le y\le\frac{1}{4}\)

\(y_{min}=-\frac{1}{4}\) khi \(sin4x=1\)

\(y_{max}=\frac{1}{4}\) khi \(sin4x=-1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Ta có:

\(y=5-\sin ^2x\cos ^2x=5-\frac{1}{4}(2\sin x\cos x)^2=5-\frac{1}{4}\sin^2 2x\)

\(\sin 2x\in [-1;1], \forall x\in\mathbb{R}\Rightarrow \sin ^2x\in [0;1]\) hay \(0\leq \sin ^22x\leq 1\)

\(\Rightarrow 5-\frac{1}{4}.0\geq 5-\frac{1}{4}\sin ^22x\geq 5-\frac{1}{4}.1\)

\(\Leftrightarrow 5\geq y\geq \frac{19}{4}\)

Vậy \(\left\{\begin{matrix} y_{\max}=5\Leftrightarrow \sin 2x=0\\ y_{\min}=\frac{19}{4}\Leftrightarrow \sin 2x=\pm 1\end{matrix}\right.\)

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a