K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

30 tháng 8 2020

D = 2x2 + 9y2 - 6xy - 6x + 12y + 2012

= [ ( x2 - 6xy + 9y2 ) - 4x + 12y + 4 ] + ( x2 - 2x + 1 ) + 2007

= [ ( x - 3y )2 - 2( x - 3y ).2 + 22 ] + ( x - 1 )2 + 2007

= ( x - 3y + 2 )2 + ( x - 1 )2 + 2007

\(\hept{\begin{cases}\left(x-3y+2\right)^2\\\left(x-1\right)^2\end{cases}}\ge0\forall x\Rightarrow\left(x-3y+2\right)^2+\left(x-1\right)^2+2007\ge2007\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3y+2=0\\x-1=0\end{cases}}\Rightarrow x=y=1\)

=> MinD = 2007 <=> x = y = 1

E = x2 - 2xy + 4y2 - 2x - 10y + 29 ( -10y mới ra đc nhé, mò mãi :v )

= [ ( x2 - 2xy + y2 ) - 2x + 2y + 1 ] + ( 3y2 - 12y + 12 ) + 16

= [ ( x - y )2 - 2( x - y ) + 12 ] + 3( y2 - 4y + 4 ) + 16

= ( x - y - 1 )2 + 3( y - 2 )2 + 16

\(\hept{\begin{cases}\left(x-y-1\right)^2\\3\left(y-2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-y-1\right)^2+3\left(y-2\right)^2+16\ge16\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

=> MinE = 16 <=> x = 1 ; y = 2

F = \(\frac{3}{2x-x^2-4}\)

Để F đạt GTNN => 2x - x2 - 4 đạt GTLN

Ta có : 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 < 0 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinF = \(\frac{3}{-3}=-1\)<=> x = 1

G = \(\frac{2}{6x-5-9x^2}\)

Để G đạt GTNN => 6x - 5 - 9x2 đạt GTLN

Ta có 6x - 5 - 9x2 = -9( x2 - 2/3x + 1/9 ) - 4 = -9( x - 1/3 )2 - 4 ≤ -4 < 0 ∀ x

Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3

=> MinG = \(\frac{2}{-4}=-\frac{1}{2}\)<=> x = 1/3

29 tháng 8 2020

a) Đặt \(x=1+m\)và \(y=1-m\)khi đó \(x+y=2\)

Ta có: \(C=x^2+y^2+7=\left(1+m\right)^2+\left(1-m\right)^2+7\)

\(=1+2m+m^2+1-2m+m^2+7=2m^2+9\)

Vì \(m^2\ge0\forall x\)\(\Rightarrow2m^2\ge0\forall m\)\(\Rightarrow2m^2+9\ge9\forall m\)

Dấu " = " xảy ra \(\Leftrightarrow m=0\)\(\Rightarrow x=y=1\)

Vậy \(minC=9\)\(\Leftrightarrow x=y=1\)

4 tháng 6 2017

1/

\(A=3x^2+6x-11\)\(=3\left(x^2+2x-\frac{11}{3}\right)\)\(=3\left[\left(x^2+2x+1\right)-\frac{14}{3}\right]\)\(=3\left(x+1\right)^2-14\ge-14\)

VẬY \(minA=-14\)khi   \(x=-1\)

2/

\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)

Biểu thức   \(\frac{6}{3x^2+2x+1}\)đạt GTLN khi   \(3x^2+2x+1\)nhỏ nhất 

Mà   \(3x^2+2x+1\ge1\)nên GTNN của   \(3x^2+2x+1\)là  \(1\)

Ta có :  \(maxB=1+6=7\) khi   \(x=0\)

TK mk nka !!!!! 

4 tháng 6 2017
  1. \(3x^2+6x-11=3\left(x^2+2x+1\right)-14=3\left(x+1\right)^2-14\ge-14\)​ \(\Rightarrow Min=-14\Leftrightarrow x=-1\)
  2. \(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)phân số đạt lớn nhất khi \(3x^2+2x+1\)giá trị nhỏ nhất nên \(3x^2+2x+1=3x^2+\frac{2.\sqrt{3}}{\sqrt{3}}x+\frac{1}{3}+\frac{4}{3}=\left(x\sqrt{3}+\frac{1}{\sqrt{3}}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

         \(\Rightarrow B_{max}=1+\frac{6}{\frac{4}{3}}=\frac{11}{2}\Leftrightarrow x=-\frac{1}{3}\)

31 tháng 7 2019

\(A=\left(x+1\right)^2+\left(x+2\right)^2=\left(x+1\right)^2+\left(-2-x\right)^2\ge\frac{1}{2}\left(x+1-2-x\right)^2=\frac{1}{2}.1^2=\frac{1}{2}\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)

\(B=-2x^2-4\le0-4=-4\Rightarrow B_{max}=-4\Leftrightarrow x=0\)

\(C=-5x^2+10x-7=-5x^2+10x-5-2=-5\left(x-1\right)^2-2\le0-2=-2\Rightarrow C_{min}=-2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

4 tháng 8 2019

\(C=2x^2+6x-2=2\left(x^2+3x-1\right)\)

\(=2\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{13}{4}\right)\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{13}{2}\ge-\frac{13}{2}\)

Đẳng thức xảy ra khi \(x=-\frac{3}{2}\)

Vậy...

E tương tự

F đang suy ra nghĩ

\(G=2x^2+2xy+y^2-2x+2y+2\)

\(=2x^2+2\left(y-1\right)x+y^2+2y+2\)

\(=2\left[x^2+2.x.\frac{y-1}{2}+\frac{\left(y-1\right)^2}{4}\right]+y^2+2y+2-\frac{\left(y-1\right)^2}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+3}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+9}{2}-\frac{6}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{1}{2}\left(y+3\right)^2-3\ge-3\)

Đẳng thức xảy ra khi x=2 y = -3

Vậy..

4 tháng 8 2019

Làm luôn câu E:

\(E=-2x^2+3x+1=-2\left(x^2-\frac{3}{2}x-\frac{1}{2}\right)\)

\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{17}{16}\right)\)

\(=-2\left(x-\frac{3}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

ĐẲng thức xảy ra khi x = 3/4

P/s: Chắc là có tính nhầm đấy:)

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1