Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$2^{x+1}.3^y=12^x=(2^2.3)^x=2^{2x}.3^x$
$\Rightarrow x+1=2x$ và $y=x$
$\Rightarrow x=1$ và $y=x$
$\Rightarrow x=y=1$
Bài 2:
a. $P(x)=|2x-6|+|2x-2|=6$
$\Rightarrow 2|x-3|+2|x-1|=6$
$\Rightarrow |x-3|+|x-1|=3(*)$
Nếu $x\geq 3$ thì $(*)$ trở thành:
$x-3+x-1=3$
$\Rightarrow 2x-4=3\Rightarrow x=\frac{7}{2}$ (tm)
Nếu $3> x\geq 1$ thì $(*)$ trở thành:
$3-x+x-1=3$
$\Rightarrow 2=3$ (vô lý - loại)
Nếu $x<1$ thì $(*)$ trở thành:
$3-x+1-x=3$
$\Rightarrow 4-2x=3$
$\Rightarrow x=\frac{1}{2}$ (tm)
Vậy..........
b.
Ta có: $P(x)=2(|x-1|+|x-3|)=2(|x-1|+|3-x|)\geq 2|x-1+3-x|=2.2=4$
Vậy $P(x)_{\min}=4$
Giá trị này đạt tại $(x-1)(3-x)\geq 0$
$\Rightarrow 1\leq x\leq 3$
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
Dễ thấy x càng lớn thì A càng lớn
vậy ko có Max
Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)
\(=a^2-6a+6a-36+2020\)
\(=a^2+1984\ge1984\left(a^2\ge0\right)\)
Vậy Min A = 1984
Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)
Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)
b )
\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)
c )
\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu " = " xảy ra khi \(x=2\)
lớp 8?
\(A=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2045\)
\(=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)+2045\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)
\(=\left(x^2+5x\right)^2-6^2+2045\)
\(=\left(x^2+5x\right)^2+2009\ge2009\)
Dấu "=" xày ra khi x2+5x=0 <=> x=0 hoặc x=-5
Vậy MinA=2009 khi x=0 hoặc x=-5
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2045\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2045\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)
\(A=\left(x^2+5x\right)^2-36+2045\)
\(A=\left(x^2+5x\right)^2+2009\)
Vì \(\left(x^2+5x\right)^2\ge0\Rightarrow\left(x^2+5x\right)^2+2009\ge2009\)
\(\Rightarrow A\ge2009\)
=> GTNN của A bằng 2009
Dấu '=' xảy ra khi \(\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
=> x = 0 hoặc x + 5 = 0 <=> x = -5
Vậy GTNN của A bằng 2009