K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Địt con cụ

7 tháng 8 2020

Dễ thấy x càng lớn thì A càng lớn

vậy ko có Max

Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)

\(=a^2-6a+6a-36+2020\)

\(=a^2+1984\ge1984\left(a^2\ge0\right)\)

Vậy Min A = 1984 

Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

7 tháng 10 2020

a, Ta có (x+2)2≥0(x+2)2≥0

⇒(x+2)2+5≥5⇒(x+2)2+5≥5

⇒30(x+2)2+5≤305=6⇒30(x+2)2+5≤305=6

Hay A≤6A≤6

Dấu = xảy ra ⇔(x+2)2=0⇔x+2=0⇔x=−2⇔(x+2)2=0⇔x+2=0⇔x=−2

b,

Ta có (x−3)2≥0(x−3)2≥0

⇒(x−3)2+4≥4⇒(x−3)2+4≥4

⇒20(x+2)2+5≤204=5⇒20(x+2)2+5≤204=5

Hay A≤5A≤5

Dấu = xảy ra ⇔(x−3)2=0⇔x−3=0⇔x=3⇔(x−3)2=0⇔x−3=0⇔x=3

c,

Ta có (x+1)2≥0(x+1)2≥0

⇒(x+1)2+2≥2⇒(x+1)2+2≥2

⇒10(x+1)2+2≤102=5⇒10(x+1)2+2≤102=5

Hay A≤5A≤5

Dấu = xảy ra ⇔(x+1)2=0⇔x+1=0⇔x=−1⇔(x+1)2=0⇔x+1=0⇔x=−1

7 tháng 10 2020

A = | 5x + 2 | + 5| x + 1 | 

= | 5x + 2 | + | 5x + 5 |

= | 5x + 2 | + | -( 5x + 5 ) |

= | 5x + 2 | + | -5x - 5 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

A = | 5x + 2 | + | -5x - 5 | ≥ | 5x + 2 - 5x - 5 | = | -3 | = 3

Dấu "=" xảy ra khi ab ≥ 0

=> ( 5x + 2 )( -5x - 5 ) ≥ 0

1. \(\hept{\begin{cases}5x+2\ge0\\-5x-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\ge-2\\-5x\ge5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{2}{5}\\x\le-1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}5x+2\le0\\-5x-5\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\le-2\\-5x\le5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{2}{5}\\x\ge-1\end{cases}}\Leftrightarrow-1\le x\le-\frac{2}{5}\)

=> MinA = 3 <=> \(-1\le x\le-\frac{2}{5}\)

22 tháng 5 2019

A = 3 x | 1 - 2x | - 5

Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0

A = 3 x | 1 - 2x | - 5 \(\ge\)- 5

Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)

1 bài thôi . còn lại tương tự

bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé

22 tháng 5 2019

Vậy còn tìm max ạ???

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3