Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=x^2+y^2+xy-3x-3y-3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)
\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)
Vậy GTNN của A là -6 tại x = y = 1
A= x2+y2+xy-3x-3y-3
\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy.............
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
Đặt biểu thức là A
\(x^2+xy+y^2-3x-3y+2018\)
\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)
\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)
Ta có : (x - y)² ≥ 0
<=> x² + y² ≥ 2xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
<=> xy ≤ (x + y)²/4
<=> -xy ≥ -(x + y)²/4
--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4
<=> A ≥ 3(x + y)²/4 - 3(x + y)
để dễ nhìn,ta đặt t = x + y
--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3
Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1
Vậy MinA = -3 <=> x = y = 1
\(H=x^2+xy+y^2-3x-3y\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(=\left[\left(x-1\right)^2+2.\frac{1}{2}.\left(x-1\right)\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2-3\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\)
Vì \(\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\forall x;y\) có GTNN là - 3
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(H_{min}=-3\) tại \(x=1;y=1\)
a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9
2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18
2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10
2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x
=>A \(\ge\)5 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2
Vậy MinA = 5 <=> x = y = 2
b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
bạn tham khảo đi Tìm GTNH: P=x^2+xy+y^2-3x-3y+2010? | Yahoo Hỏi & Đáp