Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Bunhiacopxky ta có:
\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)
\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)
\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)
\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)
Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)
\(A_{\max}=5\Leftrightarrow x=y=1\)
Bài 4:
Lời giải:
\(B=\sqrt{x-1}+\sqrt{5-x}\)
\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)
Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)
Mặt khác \(B\geq 0\)
Kết hợp cả hai điều trên suy ra \(B\geq 2\)
Vậy \(B_{\min}=2\).
Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)
---------------------------------------
\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)
\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)
Vì \(x^2\geq 0\forall x\in\mathbb{R}\)
\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)
Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)
Vậy \(A_{\min}=2\Leftrightarrow x=0\)
a: \(P=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: \(P=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/4
\(a.P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\left(x\ne1;x>0\right)\)
\(b.P=x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow P_{MIN}=\dfrac{3}{4}."="\Leftrightarrow x=\dfrac{1}{4}\)
Để em làm câu c cho 2 chị :3
\(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\)
Để \(Q\in Z\Leftrightarrow\) \(\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\in Z\) . Do đó ta cần 2 điều kiện sau :
ĐK1 : \(2\sqrt{x}\) chia hết cho \(x\)
ĐK2 : \(x\) thuộc số chính phương : \(\left(0;1;4;9;.......\right)\)
Xét ĐK1 : Ta có : \(2\sqrt{x}\le x^2\)
Do vậy nên \(2\sqrt{x}\) chia hết cho \(x^2\) khi và chỉ khi \(2\sqrt{x}=x^2\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) ( Thỏa mãn )
Vậy \(x=0\) hoặc \(x=1\) thì \(Q\in Z\)
\(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right):\dfrac{x-2}{x+1}\)
\(=\left(\dfrac{x-4}{2\left(x-2\right)}+\dfrac{2}{x\left(x-2\right)}\right).\dfrac{x+1}{x-2}\)
\(=\dfrac{x\left(x-4\right)+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{x^2-4x+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{\left(x-2\right)^2\left(x+1\right)}{2x\left(x-2\right)\left(x-2\right)}\)
\(=\dfrac{x+1}{2x}\)
Mình làm nốt bài 2 nhé :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
⇔ \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)
⇔ \(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(c+a\right)}{c+a}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{c+a}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)
\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)
\(=\left(x-2\right)\left(x+2-3+2x\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) ĐKXĐ: x ≠ 5; x ≠ -5
Với điều kiện trên ta có:
\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)
\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)
\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)
\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)
\(\Leftrightarrow5x-25=0\)
\(\Leftrightarrow5x=25\)
\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)
Vậy tập nghiệm của phương trình là S = ∅
c) ĐKXĐ: x ≠ 1
Với điều kiện trên ta có:
\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)
\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)
\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)
a. \(y=\sqrt{x^2-6x+10}=\sqrt{x^2-6x+9+1}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{0+1}=1\)
\(\Rightarrow Min_y=1\Leftrightarrow x=3\)
b. \(y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+1}=\sqrt{\left(\dfrac{x}{3}\right)^2-2.\dfrac{x}{3}.\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{24}{25}}=\sqrt{\left(\dfrac{x}{3}-\dfrac{1}{5}\right)^2+\dfrac{24}{25}}\ge\sqrt{0+\dfrac{24}{25}}=\sqrt{\dfrac{24}{25}}\)
\(\Rightarrow Min_y=\sqrt{\dfrac{24}{25}}\Leftrightarrow x=\dfrac{3}{5}\)
Giải:
a) \(y=\sqrt{x^2-6x+10}\)
\(\Leftrightarrow y=\sqrt{x^2-6x+9+1}\)
\(\Leftrightarrow y=\sqrt{\left(x^2-6x+9\right)+1}\)
\(\Leftrightarrow y=\sqrt{\left(x-3\right)^2+1}\ge1\)
\(\Leftrightarrow y_{Min}=1\)
\("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy ...
b) \(y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+1}\)
\(\Leftrightarrow y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+\dfrac{1}{25}+\dfrac{24}{25}}\)
\(\Leftrightarrow y=\sqrt{\left(\dfrac{x^2}{9}-\dfrac{2x}{15}+\dfrac{1}{25}\right)+\dfrac{24}{25}}\)
\(\Leftrightarrow y=\sqrt{\left(\dfrac{x}{3}-\dfrac{1}{5}\right)^2+\dfrac{24}{25}}\ge\dfrac{24}{25}\)
\(\Leftrightarrow y_{Min}=\dfrac{24}{25}\)
\("="\Leftrightarrow\dfrac{x}{3}-\dfrac{1}{5}=0\Leftrightarrow x=\dfrac{3}{5}\)
Vậy ...
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)