K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Câu 1:

\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)

\(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)

\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)

\(k\in Z\) nên \(k=3\)

Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)

21 tháng 9 2018

Câu 2:

\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)

Điều kiện để phương trình có nghiệm là:

\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là? 2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là? 3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\) 4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là? 5. Nghiệm...
Đọc tiếp

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

11
16 tháng 8 2020

Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?

NV
16 tháng 8 2020

Vì mình lấy giá trị nguyên bạn

Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)

\(\Rightarrow-0,25< k< 321,243\) (1)

Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
NV
7 tháng 11 2019

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
7 tháng 11 2019

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

29 tháng 3 2020

Bài 1:

ĐK : sinx cosx > 0

Khi đó phương trình trở thành

sinx+cosx=\(2\sqrt{\sin x\cos x}\)

ĐK sinx + cosx >0 → sinx>0 ; cosx>0

Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Vậy ...

29 tháng 3 2020

Bài 2:

ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)

Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :

\(x=\frac{\pi}{12}\) (TMĐK)

\(x=-\frac{11\pi}{12}\) (KTMĐK)

\(x=\frac{5\pi}{12}\) (KTMĐK)

\(x=-\frac{7\pi}{12}\) (TMĐK)

Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\)\(x=-\frac{7\pi}{12}\)

NV
5 tháng 9 2020

a/

Đặt \(cosx=t\Rightarrow0< t\le1\)

\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)

\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)

\(\Leftrightarrow t=2m-2\)

\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)

b.

\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)

Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)

\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)

Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)

\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)

\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)

\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)