K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DY
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
4 tháng 8 2020
Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.
6 tháng 7 2022
a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)
\(=16m^2-32m+16+16m-40\)
\(=16m^2-16m-24\)
\(=8\left(2m^2-2m-3\right)\)
Để pT có nghiệm kép thì \(2m^2-2m-3=0\)
hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)
b: Thay x=2 vào PT, ta được:
\(4+8\left(m-1\right)-4m+10=0\)
=>8m-8-4m+14=0
=>4m+6=0
hay m=-3/2
Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)
=>x2=8
19 tháng 1 2020
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2-10x+m=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x^2-10x+m=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x=\dfrac{m-4}{6}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm khi:
\(\dfrac{m-4}{6}>2\Rightarrow m>16\)