K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

NV
21 tháng 8 2021

\(\Leftrightarrow\dfrac{m}{2}\left(1-cos4x\right)-\dfrac{3}{2}sin4x+\dfrac{1+cos4x}{2}=2\)

\(\Leftrightarrow\left(1-m\right)cos4x-3sin4x=3-m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt đã cho có nghiệm khi:

\(\left(1-m\right)^2+\left(-3\right)^2\ge\left(3-m\right)^2\)

\(\Leftrightarrow4m+1\ge0\Leftrightarrow m\ge-\dfrac{1}{4}\)

12 tháng 3 2021

Ai giúp em với ạ hic :((

16 tháng 10 2021

C) Pt \(\Rightarrow m\cdot\dfrac{1-cos2x}{2}-\left(m-1\right)sin2x+\left(2m+1\right)\cdot\dfrac{1+cos2x}{2}=0\)

\(\Rightarrow\left(m+1\right)cos2x-\left(2m-2\right)sin2x=-1-3m\)

Pt có nghiệm:  \(\Leftrightarrow\) \(\left(m+1\right)^2+\left[-\left(2m-2\right)\right]^2\ge\left(1+3m\right)^2\)

                        \(\Rightarrow\dfrac{-3-\sqrt{13}}{2}\le m\le\dfrac{-3+\sqrt{13}}{2}\)

Pt vô nghiệm: \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-3+\sqrt{13}}{2}\\m< \dfrac{-3-\sqrt{13}}{2}\end{matrix}\right.\)

                        

Để phương trình vô nghiệm thì 5m-3>1 hoặc 5m-3<0

=>m>4/5 hoặc m<3/5

25 tháng 8 2023

PT vô nghiệm.

+) \(5m-3< 0\)

<=> \(5m< 3\)

<=> \(m< \dfrac{3}{5}\)

+) `5m-3>1`

<=>`5m>4`

<=> `m>4/5`

Vậy, để phương trình `cos^2(2x - (π)/3) = 5m - 3` vô nghiệm, m phải nhỏ hơn `3/5` hoặc m phải lớn hơn `4/5`

10 tháng 8 2021

Ta có : \(\cos\left(2x+\dfrac{\pi}{6}\right)=m+1,x\in\left(\dfrac{7\pi}{24};\dfrac{3\pi}{4}\right)\)

Thấy \(x\in\left(\dfrac{7\pi}{24};\dfrac{3\pi}{4}\right)\)

\(\Rightarrow2x+\dfrac{\pi}{6}\in\left(\dfrac{3\pi}{4};\dfrac{5\pi}{3}\right)\)

\(\Rightarrow\cos\left(2x+\dfrac{\pi}{6}\right)\in\left(-1;\dfrac{1}{2}\right)\)

\(\Rightarrow-1< m+1< \dfrac{1}{2}\)

\(\Rightarrow-2< m< -\dfrac{1}{2}\)

Vậy ...

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Đoạn \(2x+\dfrac{\pi}{6}\in\left(\dfrac{3\pi}{4};\dfrac{5\pi}{3}\right)\) thì suy ra \(\cos\left(2x+\dfrac{\pi}{6}\right)\in\) [\(-1;\dfrac{1}{2}\)) bạn ạ.

6 tháng 9 2020

sao chỗ dòng3 lại ra được (4m+2)cos2x vậy ạ

NV
5 tháng 9 2020

\(\Leftrightarrow\left(2m+3\right).2sin^2x+\left(m+1\right).2sinx.cosx-\left(2m-1\right).2cos^2x=6m+8\)

\(\Leftrightarrow\left(2m+3\right)\left(1-cos2x\right)+\left(m+1\right)sin2x-\left(2m-1\right)\left(1+cos2x\right)=6m+8\)

\(\Leftrightarrow\left(m+1\right)sin2x-\left(4m+2\right)cos2x=6m+4\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi và chỉ khi:

\(\left(m+1\right)^2+\left(4m+2\right)^2\ge\left(6m+4\right)^2\)

\(\Leftrightarrow19m^2+30m+11\le0\)

\(\Leftrightarrow-1\le m\le-\frac{11}{19}\)

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)