K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2017

Lời giải:

Ta có \(y=x^3 -3mx^2+(m^2-1)x+2\)

\(\Rightarrow y'=3x^2-6mx+(m^2-1)\)

Để hàm số đạt cực trị tại $x=2$ thì phương trình \(y'=0\) phải có nghiệm $x=2$

\(\Leftrightarrow 3.2^2-6.m.2+m^2-1=0\)

\(\Leftrightarrow m^2-12m+11=0\Leftrightarrow m=1\) hoặc $m=11$

TH1: \(m=1\Rightarrow y'=3x^2-6x=0\Leftrightarrow x=0\) hoặc $x=2$

Lập bảng biến thiên ta thấy \(y_{\text{ct}}\) tại $x=2$ chứ không phải cực đại (loại)

TH2: \(m=11\Rightarrow y'=3x^2-66x+120=0\Leftrightarrow x=20\) hoặc \(x=2\)

Lập bảng biến thiên ta thấy \(y_{\text{cđ}}\) tại $x=2$ (thỏa mãn)

Vậy $m=11$

26 tháng 5 2017

Bạn giải : y'(2)=0 và y''(2)>0 bạn nhé

2 tháng 6 2017

mình thắc mắc là tại y'(2) mình thấy Δ < 0 tức là m tại y' vô nghiệm nên ko có m để hàm có cực trị = 2 nên ta phải tìm tiếp y'' đúng ko? Hay là bài này ko có m vậy mọi ng?

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)

Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)

a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)

Thử lại: \(y'=2x^2-2x\)

\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$

Vậy $m=2$

b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)

\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)

\(\Leftrightarrow m=\frac{4}{3}\)

Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$

Vậy không tồn tại $m$ thỏa mãn.

c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.

Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt

Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)

d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$

Với ĐKXĐ như phần c, áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)

Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)

\(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)

Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)

Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$

10 tháng 5 2022

y'=3x2-2(m+2)x+1-m.

\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).

|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).

14 tháng 10 2020

2.

\(y'=3x^2-6mx+6m\)

Hàm số y có 2 điểm cực trị \(\Leftrightarrow\Delta'>0\)

\(\Leftrightarrow\left(-3m\right)^2-18m>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

14 tháng 10 2020

1.

Nhắc nhở một tý: Phương trình bậc 3 thì chỉ có thể có 2 cực trị hoặc là không có cực trị nào hết, không phương trình bậc 3 nào có 1 cực trị hết.

\(y'=x^3-6mx+4m^3\)

Hàm số có cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

\(\Leftrightarrow\left(-3m\right)^2-4m^3>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m< \frac{9}{4}\end{matrix}\right.\)

11 tháng 7 2016

ta có y'=3x^2-m

để hs có cực trị thì y'=0 có  nghiệm phân biệt <=>3x^2-m=0<=>x^2=m/3<=>m/3>0 =>m>0

vậy với m>0 thì hs có cực trị

 

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

a)

Để hàm không có cực trị thì \(y'=3x^2-6x+3m=0\) không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow \Delta'=9-9m\leq 0\Leftrightarrow m\geq 1\)

b)

Để ĐTHS có điểm cực đại và cực tiểu thì

\(y'=3x^2-6x+3m=0\) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta'=9-9m>0\Leftrightarrow m<1\)

11 tháng 7 2016

TXD D=R

y'=3x^2-2mx+m-2/3.

nếu hs đạt cực tiểu tại x=1 thì y'(1)=0

<=>3-2m+m-2/3=0<=>m=7/3

khi m=7/3 thì y'=3x^2-14/3x+5/3=0     y''=6x-14/3

ta có y'=0<=>x=1 hoặc x=5/9 =>y''(1)=6-14/3=4/3 >0

vậy tại m=7/3  là điểm cực tiểu tại x=1