Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự làm
b, để bpt có nghiệm đúng với mọi x thuộc R <=> \(^{\Delta}\) \(\le\) 0
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)
Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì:
\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)
\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).
a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)
\(\Leftrightarrow x>-1\)
Nghiệm của $VT(*)$ là $S=(-1;+\infty)$
b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$
$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:
- + -4 0 1 + - - + 0 0 0 x VT(*)
Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$
Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)
Đặt \(t=\left|x-1\right|;t\ge0\)
Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)
Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)
Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)
\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)
Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)
Vậy...
có nghiệm với mọi giá trị của x khi a = 0 mà m²+1 > 0 nên không có m thỏa đề