\(x^2-2x+\left|x-1\right|+m\ge0\) có tập nghiệm là R

(key: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)

Đặt \(t=\left|x-1\right|;t\ge0\)

Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)

Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)

Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)

\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)

Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)

Vậy...

 

14 tháng 7 2021

😘

NV
17 tháng 5 2020

\(-x^2+x-4=-\left(x-\frac{1}{2}\right)^2-\frac{15}{4}< 0;\forall x\) nên BPT tương đương:

\(-2x^2-2\left(m+3\right)x+m\le-x^2+x-4\)

\(\Leftrightarrow x^2+\left(2m+7\right)x-m-4\ge0\)

Để BPT có tập nghiệm R

\(\Leftrightarrow\Delta\le0\)

\(\Leftrightarrow\left(2m+7\right)^2+4\left(m+4\right)\le0\)

\(\Leftrightarrow4m^2+32m+65\le0\)

\(\Leftrightarrow4\left(m+4\right)^2+1\le0\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

NV
23 tháng 5 2020

a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m

b/

- Với \(m\le1\) BPT luôn có nghiệm

- Với \(m>1\) để BPT có nghiệm

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)

\(\Leftrightarrow2m^2+3m+11\ge0\)

\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)

Vậy BPT đã cho có nghiệm với mọi m