\(\left(x-m\right)\left(x^2+x-2\right)\ge0\) nghiệm đúng với mọi x dương

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

a, tự làm

b, để bpt có nghiệm đúng với mọi x thuộc R <=> \(^{\Delta}\)     \(\le\)   0 

 

6 tháng 4 2020

có nghiệm với mọi giá trị của x khi a = 0 mà m²+1 > 0 nên không có m thỏa đề

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

NV
13 tháng 4 2020

\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\) \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\left(1\right)\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\left(2\right)\end{matrix}\right.\)

\(m=-6\) ko thỏa mãn

TH1: xét (1)

\(\Leftrightarrow\left\{{}\begin{matrix}m+6>0\\9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-6\\5m^2+6m-171>0\end{matrix}\right.\) \(\Rightarrow m>\frac{-3+12\sqrt{6}}{5}\)

TH2: xét (2)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\5m^2+30m-27>0\end{matrix}\right.\) \(\Rightarrow m< \frac{-15-6\sqrt{10}}{5}\)

Lấy hợp 2 nghiệm (xấu quá)