Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
Để phương trình có nghiệm đúng với mọi x thì
(2m)^2-4(m-2)(-m-2)<0 và m-2<0
=>4m^2+4(m^2-4)<0 và m<2
=>8m^2-16<0 và m<2
=>m^2<2
=>-căn 2<m<căn 2
- Với \(m=-1\) BPT trở thành: \(1>0\) thỏa mãn
- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(2m+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(-m-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -2\\m>-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge-1\end{matrix}\right.\)
Để \(f\left(x\right)=x^2-2mx+3m-2>0\) \(\forall x< 4\) thì:
\(\left[{}\begin{matrix}\Delta'< 0\\\left\{{}\begin{matrix}\Delta'=0\\\frac{-b}{2a}\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}\Delta'>0\\4< x_1< x_2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\Delta'< 0\Rightarrow m^2-3m+2< 0\Rightarrow1< m< 2\)
TH2: \(\left\{{}\begin{matrix}\Delta'=0\\\frac{-b}{2a}\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2=0\\m\ge4\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'>0\\4< x_1< x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\a.f\left(4\right)>0\\\frac{S}{2}>4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+2>0\\16-8m+3m-2>0\\m>4\end{matrix}\right.\)
\(\Rightarrow\) ko có m thỏa mãn
Vậy với \(1< m< 2\) thì \(f\left(x\right)>0\) \(\forall x< 4\)
2|x-m|+x2+2 > 2mx
<=> 2x-2m+x2+2-2mx >0
<=> x2+2(1-m)x+2 -2m >0
Ta có: a+b+c >0 pt luôn có 2 nghiệm
x1=1; x2=2-2m
=>2-2m \(\ne\)0 => m\(\ne\)1
=> m\(\in\varnothing\)