Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=
−
1
9
x4y3(2xy2)2=
−
1
9
x4y3(4x2y4)=
−
1
9
x6y7
b) y=
−
x
3
=> x=-3y
mà x+y=2
=>-3y+y=2 <=> -2y=2 => y=-1 => x=-3y=-3*-1=3
Thay x=3; y=-1 vào M...=>M=
−
1
9
(36)(-17)=81
nhớ nhé!
Tìm đa thức M biết :
a, M +5 (5x2 - 2xy) = 6x2 +9xy - y2
M + 5. 5x2 - 5. 2xy = 6x2 + 9xy - y2
M + 25x2 - 10xy = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 + 10xy - 25x2
M = ( 6x2 - 25x2 ) + ( 9xy + 10xy ) - y2
M = -19x2 + 19xy - y2
b, M - ( 3xy - 4y2 ) = x2 - 7xy + 8xy
M - 3xy + 4y2 = x2 - 15xy
M = x2 - 15xy - 4y2 + 3xy
M = x2 + ( 15xy + 3xy ) - 4y2
M = x2 + 18xy - 4y2
c, (25 . x2y - 13xy2+ y3 ) - M = 11x2y - 2y3
25x2y - 13xy2+ y3 - M = 11x2y - 2y3
M = 25x2y - 13xy2+ y3 - 11x2y - 2y3
M = ( 25x2y - 11x2y ) + ( y3 - 2y3 ) - 13xy2
M = 14x2y - y3 - 13xy2
d, M + (5x2 - 2xy )= 6x2 + 9xy -y2
M + 5x2 - 2xy = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 + 2xy - 5x2
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
M+(5x2-2xy)=6x2+9xy-y2
=>M=(6x2+9xy-y2)-(5x2-2xy)
=6x2+9xy-y2-5x2+2xy
=x2+11xy-y2
Vậy M=x2+11xy-y2
M + ( 5x2 -2xy) = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 - ( 5x2 -2xy)
M = x2 + 11xy - y2
a, x^2-x=0
<=> x(x-1)=0 => x=0 hoặc x=1 thay vào A là tính được
b,có cho y đâu mà tính
1)Tìm đa thức M biết rằng :M+(5x2 -2xy)=6x2+9xy-y2
2)Tìm GTLN của :B=\(\frac{x^2+y^2+3}{x^2+y^2+2}\)
1)
\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M+5x^2-2xy=6x^2+9xy-y^2\)
\(M=\left(6x^2+9xy-y^2\right)-\left(5x^2+2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2-2xy\)
\(M=\left(6x^2-5x^2\right)+\left(9xy-2xy\right)-y^2\)
\(M=x^2+7xy-y^2.\)
Chúc em học tốt!
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\) \(\forall x,y\)
mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\) (đề bài ) \(\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Rút gọn biểu thức
\(m+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
=> \(m=x^2+11xy-y^2\)
Thay x,y, vừa tìm được vào biểu thức đã được rút gọn ta tính được m
Đây là bài hướng dẫn, có gì thắc mắc hãy hỏi lại!!