Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
b) (25x2y - 13xy2 + y3) - m = 11x2y - 2y3
=> m = (25x2y - 13xy2 + y3) - (11x2y - 2y3)
=> m = 25x2y - 13xy2 + y3 - 11x2y + 2y3 = 14x2y - 13xy2 + 3y3
c) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a,\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(< =>M=6x^2+9xy-y^2-5x^2+2xy\)
\(< =>M=x^2+11xy-y^2\)
b,\(\left(25x^2y-13xy^2+y^3\right)-M=11x^2y-2y^3\)
\(< =>M=25x^2y-13xy^2+y^3-11x^2y+2y^3\)
\(< =>M=14x^2y-12xy^2+3y^3\)
c,\(M+\left(12x^4-15x^2y+2xy^2+7\right)=0\)
\(< =>M=15x^2y-7-2xy^2-12x^4\)
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
Tìm đa thức M biết :
a, M +5 (5x2 - 2xy) = 6x2 +9xy - y2
M + 5. 5x2 - 5. 2xy = 6x2 + 9xy - y2
M + 25x2 - 10xy = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 + 10xy - 25x2
M = ( 6x2 - 25x2 ) + ( 9xy + 10xy ) - y2
M = -19x2 + 19xy - y2
b, M - ( 3xy - 4y2 ) = x2 - 7xy + 8xy
M - 3xy + 4y2 = x2 - 15xy
M = x2 - 15xy - 4y2 + 3xy
M = x2 + ( 15xy + 3xy ) - 4y2
M = x2 + 18xy - 4y2
c, (25 . x2y - 13xy2+ y3 ) - M = 11x2y - 2y3
25x2y - 13xy2+ y3 - M = 11x2y - 2y3
M = 25x2y - 13xy2+ y3 - 11x2y - 2y3
M = ( 25x2y - 11x2y ) + ( y3 - 2y3 ) - 13xy2
M = 14x2y - y3 - 13xy2
d, M + (5x2 - 2xy )= 6x2 + 9xy -y2
M + 5x2 - 2xy = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 + 2xy - 5x2
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
Giả sử 22 +2002=m2 (m thuộc N)=>m2 -n2 = 2002
Vì hiệu của 2 số chính phương chia cho 4 ko có số dư là 2
mà 2002 : 4 dư 2
Vậy ko có số tự nhiên n nào để n2 +2002 là số chính phương,
Có M+5x^2-2xy-y^2=6x^2+9xy-y^2
=> M= 6x^2+9xy-y^2-(5x^2-2xy-y^2)
=> M=6x^2-9xy-y^2-5x^2+2xy+y^2
=>M=(6x^2-5x^2)+(-9xy+2xy)+(y^2-y^2)
=> M= x^2-7xy
M + 5x2 - 2xy - y2 = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - ( 5x2 - 2xy - y2 ) (chuyển vế)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy + y2 ( bỏ dấu ngoặc)
=> M = ( 6x2 - 5x2) + (9xy + 2xy) + ( - y2 + y2)
=> M = x2 + 11xy
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Ta có: B = -4x2 + 3x + 1 = -4(x2 - 3/4x + 9/64) + 7/16 = -4(x - 3/8)2 + 7/16
Ta luôn có: -4(x - 3/8)2 \(\le\)0 \(\forall\)x
=> -4(x - 3/8)2 + 7/16 \(\le\)7/16 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/8 = 0 <=> x = 3/8
Vậy Max của B = 7/16 tại x = 3/8
Ta có: C = -5x2 - 2xy - y2 + 4x + 7 = -(4x2 - 4x + 1) - (x2 + 2xy + y2) + 8 = -(2x - 1)2 - (x + y)2 + 8
Ta luôn có: -(2x - 1)2 \(\le\)0\(\forall\)x
-(x + y)2 \(\le\)0 \(\forall\)x;y
=> -(2x - 1)2 - (x + y)2 + 8 \(\le\)8 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\x+y=0\end{cases}}\) <=> \(\hept{\begin{cases}2x=1\\x=-y\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max của C là 8 tại x = 1/2 và y = -1/2
M+(5x2-2xy)=6x2+9xy-y2
=>M=(6x2+9xy-y2)-(5x2-2xy)
=6x2+9xy-y2-5x2+2xy
=x2+11xy-y2
Vậy M=x2+11xy-y2
M + ( 5x2 -2xy) = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 - ( 5x2 -2xy)
M = x2 + 11xy - y2