Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(1-x^2+x^4\right)^{16}=M.C^k_{16}.\left(x^4-x^2\right)^k=M.C^k_{16}.N.C^i_k.\left(x^4\right)^i.\left(-x^2\right)^{k-i}\)
\(=M.N.C^k_{16}.C^i_k.\left(-1\right)^{k-i}.x^{2i+2k}\)
Hệ số của x^16 => 2i + 2k = 16 => i + k = 8 và \(i\le k\)=> Tìm i và k
Số hạng tổng quát: \(C_5^k2^kx^k3^{5-k}\)
\(\Rightarrow\) Hệ số của \(x^2\) là \(C_5^22^23^3\)
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
Số hạng tổng quát trong khai triển \(\left(2x-\dfrac{1}{x}\right)^{13}\) là \(C^k_{13}\cdot\left(2x\right)^{13-k}\cdot\left(-\dfrac{1}{x}\right)^{13}\)
\(=C^k_{13}\cdot2^{13-k}\cdot x^{13-k}\cdot\dfrac{\left(-1\right)}{x^{13}}\)
\(=C^k_{13}\cdot\left(-1\right)\cdot2^{13-k}\cdot x^{-k}\)
Hệ số của x^10 sẽ tương ứng với -k=10
=>k=-10(loại)
=>Không có x10 trong khai triển này
Số hạng tổng quát trong khai triển thế này mới đúng chứ em:
\(C_{13}^k.\left(2x\right)^k.\left(-\dfrac{1}{x}\right)^{13-k}=C_{13}^k.2^k.x^k.\left(-1\right)^{13-k}.x^{x-13}=C_{13}^k.2^k.\left(-1\right)^{13-k}.x^{2k-13}\)
Mặc dù kết quả vẫn là ko tồn tại số hạng chứa \(x^{10}\) do \(2k-13=10\Rightarrow k=\dfrac{23}{2}\) ko phải số tự nhiên