Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
Xét khai triển: \(\left(2x-1\right)^n\) với \(n\ge5\)
SHTQ: \(C_n^k.\left(2x\right)^k.\left(-1\right)^{n-k}=C_n^k.2^k.\left(-1\right)^{n-k}.x^k\)
Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5.2^5.\left(-1\right)^{n-5}\)
Do đó hệ số của \(x^5\) trong khai triển đã cho là:
\(C_5^5.2^5.\left(-1\right)^0+C_6^5.2^5.\left(-1\right)^1+C_7^5.2^5.\left(-1\right)^2=...\)
Chọn B
Ta có a8= C88+C98+C108+C118+C128= 1+9+45+165+495= 715
Xét khai triển: \(\left(x+1\right)^n\) với \(n\ge5\)
SHTQ: \(C_n^k.x^k\)
Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5\)
Hệ số của \(x^5\) trong khai triển đã cho:
\(C_6^5+C_7^5+C_8^5+...+C_{12}^5=...\)