Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 32; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.
Ta có: Δ = (-32)2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
a) S = 32 ; P = 231 ⇒ S 2 – 4 P = 322 – 4 . 231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x 2 – 32 x + 231 = 0 .
Ta có: Δ = ( - 32 ) 2 – 4 . 231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S 2 – 4 P = ( - 8 ) 2 – 4 . ( - 105 ) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 8 x – 105 = 0
Ta có: Δ ’ = 4 2 – 1 . ( - 105 ) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S 2 – 4 P = 2 2 – 4 . 9 = - 32 < 0
⇒ Không tồn tại u và v thỏa mãn.
a) u và v là nghiệm của phương trình: x2 – 32x + 231 = 0
∆’ = 162 – 231 = 256 – 231 = 25, \(\sqrt{\text{∆}'}\) = 5 . x1 = 21, x2 = 11
Vậy u = 21, v = 11 hoặc u = 11, v = 21
b) u, v là nghiệm của phương trình:
x2 + 8x – 105 = 0, ∆’ = 16 + 105 = 121, \(\sqrt{\text{∆}'}\) = 11 . x = -4 + 11 = 7
x2 = -4 – 11 = -15
Vậy u = 7, v = -15 hoặc u = -15, v = 7
c) Vì 22 – 4 . 9 < 0 nên không có giá trị nào của u và v thỏa mãn điều kiện đã cho.
a) u và v là nghiệm của phương trình: x2 – 32x + 231 = 0
∆’ = 162 – 231 = 256 – 231 = 25, √∆' = 5 . x1 = 21, x2 = 11
Vậy u = 21, v = 11 hoặc u = 11, v = 21
b) u, v là nghiệm của phương trình:
x2 + 8x – 105 = 0, ∆’ = 16 + 105 = 121, √∆' = 11 . x = -4 + 11 = 7
x2 = -4 – 11 = -15
Vậy u = 7, v = -15 hoặc u = -15, v = 7
c) Vì 22 – 4 . 9 < 0 nên không có giá trị nào của u và v thỏa mãn điều kiện đã cho.
Tức là như thế này:
a/ \(u+v=32\Rightarrow u=32-v\)hoặc \(v=32-u\)(Cái này tùy bạn chọn nhưng mình chọn cái 1)
Ta có: \(uv=231\)
\(\Leftrightarrow\left(32-v\right)v=231\)
\(\Leftrightarrow32v-v^2-231=0\)
\(\Leftrightarrow-v^2+32v-231=0\)
Sau đó bạn giải \(\Delta\)tìm được \(v\)và có \(v\)rồi thì ra cái còn lại.
Các câu sau tương tự không có gì hết
a) S = 12, P = 28 ⇒ S 2 – 4 P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x 2 – 12 x + 28 = 0 .
Có a = 1; b = -12; c = 28 ⇒ Δ ’ = ( - 6 ) 2 – 28 = 8 > 0
Phương trình có hai nghiệm x 1 = 6 + 2 √ 2 ; x 2 = 6 - 2 √ 2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2
b) S = 3; P = 6 ⇒ S 2 – 4 P = - 15 < 0
Vậy không tồn tại u, v thỏa mãn yêu cầu.
S = 12, P = 28 ⇒ S2 – 4P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x2 – 12x + 28 = 0.
Có a = 1; b = -12; c = 28 ⇒ Δ’ = (-6)2 – 28 = 8 > 0
Phương trình có hai nghiệm x1 = 6 + 2√2; x2 = 6 - 2√2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2
a) S = 42; P = 441 ⇒ S 2 – 4 P = 42 2 – 4 . 441 = 0
⇒ u và v là hai nghiệm của phương trình: x 2 – 42 x + 441 = 0
Có: Δ ’ = ( - 21 ) 2 – 441 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 = - b ’ / a = 21 .
Vậy u = v = 21.
b) S = -42; P = -400 ⇒ S 2 – 4 P = ( - 42 ) 2 – 4 . ( - 400 ) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 42 x – 400 = 0
Có Δ ’ = 21 2 – 1 . ( - 400 ) = 841
⇒ Phương trình có hai nghiệm phân biệt:
Vậy u = 8; v = -50 hoặc u = -50; v = 8.
c) u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S= u + (-v) = 5; P = u. (-v) = -24 ⇒ S 2 – 4 P = 5 2 – 4 . ( - 24 ) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x 2 – 5 x – 24 = 0
Có Δ = ( - 5 ) 2 – 4 . 1 . ( - 24 ) = 121
⇒ Phương trình có hai nghiệm phân biệt
⇒ u = 8; -v = -3 hoặc u = -3; -v = 8
⇒ u = 8; v = 3 hoặc u = -3; v = -8.
H = 32; U = 231 => H^2 - 4U = 32^2 - 4.231 = 100 > 0
tồn tại u và v là 2 nghiệm pt: x^2 - 32x + 231 = 0
ta có: \(\Delta=\left(-32x\right)^2-4.231=100>0\)
pt có 2 nghiệm:
\(x_1=\frac{32+100}{2.1}=21;x_2=\frac{32-\sqrt{100}}{2.1}=11\)
\(\Rightarrow\hept{\begin{cases}u=21;v=11\\u=11;v=21\end{cases}}\)