K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

cộng 3 đẳng thức , ta được :

x . ( x + y + z ) + y . ( x + y + z ) + z . ( x + y + z ) = ( -5 ) + 9 + 5

( x + y + z ) . ( x + y + z ) = 9

( x + y + z )2 = 32 hoặc ( x + y + z )2 = ( -3 )2

=> \(\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

nếu x + y + z = 3 thì :

x . ( x + y + z ) = -5

x . 3 = -5

x = \(\frac{-5}{3}\)

y . ( x + y + z ) = 9

y . 3 = 9

y = 3

z . ( x + y + z ) = 5

z . 3 = 5

z = \(\frac{5}{3}\)

nếu x + y + z = -3 thì :

x . ( x + y + z ) = -5

x . ( -3 ) = ( -5 )

x = \(\frac{5}{3}\)

y . ( x + y + z ) = 9

y . ( -3 ) = 9

y = ( -3 )

z . ( x + y + z ) = 5

z . ( -3 ) = 5

z = \(\frac{-5}{3}\)

Vậy ...

11 tháng 6 2016

Từ giả thiết,ta có:\(\left(x+y+z\right)\left(x+y+z\right)=-5.9.5=-225\Leftrightarrow\left(x+y+z\right)^2=-225\)n

=> x+y+z không tồn tại.

=> không tồn tại các số x,y,z

15 tháng 8 2017

Ta có :*x(x+y+z) =   - 5 (1)

* y(x+y+z) = 9 (2)

* z(x+y+z)=5 (3)

Từ (1) ; (2) và (3) , ta có :

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5

Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :

 (x+y+z) . (x+y+z) = 9 

\(\Rightarrow\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3

\(-\) TRƯỜNG HỢP  : x+y+z =3 :

 * từ (1) có :  x(x+y+z=3 ) = -5   và        x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)

* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)

\(-\) TRƯỜNG HỢP x +y+z=-3 :

* từ (1) có  x(x+y+z=3 ) = -5   và        x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)

 * từ (3) có : z(x+y+z) =5   và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)

Đảm bảo đúng 100% . K MIK NHA MN!

15 tháng 8 2017

Đặt

\(x.\left(x+y+z\right)=-5\) (1)

\(y.\left(x+y+z\right)=9\)      (2)

\(x.\left(x+y+z\right)=5\)      (3)

Cộng (1);(2);(3) với nhau ta được 

\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)

\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)

Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)

Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)

Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)

Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)

Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)

Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)

Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

21 tháng 6 2015

x(x+y+z) = -5 (1)

y(x+y+z) = 9  (2)

z(x+y+z) = 5  (3)

Cộng (1) ( 2)và (3) ta có

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 +5 

=> (x+y+z) (x +y +z) = 9 

=> (x+y+z)^2 = 9 

=> x+y +z = 3 hoặc x+y +z = - 3 

(+) TH1 x + y +z = 3 

thay vào (1) ta có : x . 3 = -5 => x = -5/3

thay vào (2) ta có : y . 3 =  => y =3

thay vào 3 ta có z . 3 = 5 => z = 5/3

 (+) TH2 tương tự 

(lik e nha **** hết cho mình đi)

14 tháng 7 2016

Ta có :

\(x\left(x+y+z\right)=-5\)

\(y\left(x+y+z\right)=9\)

\(z\left(x+y+z\right)=-5\)

\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+-5\)

\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Rightarrow\left(x+y+z\right)^2=3^2=\left(-3\right)^2\)

Với \(\left(x+y+z\right)=3\); ta có:

\(x=-5:\left(x+y+z\right)=-5:3=-\frac{5}{3}\)

\(y=9:\left(x+y+z\right)=9:3=3\)

\(z=5:\left(x+y+z\right)=5:3=\frac{5}{3}\)

Với \(\left(x+y+z\right)=-3\)

\(x=-5:\left(x+y+z\right)=-5:\left(-3\right)=\frac{5}{3}\)

\(y=9:\left(x+y+z\right)=9:\left(-3\right)=-3\)

\(z=5:\left(x+y+z\right)=5:\left(-3\right)=-\frac{5}{3}\)

14 tháng 7 2016

x(x+y+z) + y(x+y+z) + z(x+y+z) = (-5) + 9 + 5   
suy ra (x+y+z ) ( x+y+z ) = 9
          (x+y+z)^2 = 9 
x+y+z = -3 hoặc 3 
đến đây thay vào đề bài là làm được

19 tháng 6 2016

x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+5+9

(x+y+z)(x+y+z)=9

(x+y+z)^2=9

x+y+z=3 hoặc x+y+z=-3

Với x+y+z=3 thì x=-5/3, y=3, z=5/3

Với x+y+z=-3 thì x=5/3, y=-3, z=-5/3

19 tháng 6 2016

Ta có: x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5

          (x+y+z)(x+y+z)                    = 9

          (x+y+z)2                            = 9

          x+y+z                                 = 3

Ta có: x(x+y+z)=-5 =>x.3= -5 =>x= -5/3

          y(x+y+z)=9 =>y.3= 9 =>y= 3

          z(x+y+z)= 5 =>z.3=5 =>z=5/3

Vậy x=-5/3 ; y=3 ; z=5/3

           

6 tháng 9 2016

\(\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}\)

Cộng theo vế của (1); (2) và (3) ta có:

\(\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=\pm9\)

Xét \(x+y+z=9\)

\(\Rightarrow\begin{cases}x\cdot9=-5\\y\cdot9=9\\z\cdot9=5\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{9}\\y=1\\z=\frac{5}{9}\end{cases}\)

Xét \(x+y+z=-9\)

\(\Rightarrow\begin{cases}x\cdot\left(-9\right)=\left(-5\right)\\y\cdot\left(-9\right)=9\\z\cdot\left(-9\right)=5\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{5}{9}\\y=-1\\z=-\frac{5}{9}\end{cases}\)

16 tháng 7 2017

Vì x ( x + y + z ) = - 5

y ( x + y + z ) = 9

z ( x + y + z ) = 5

=> Ta có:

x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = -5 + 9 + 5

=>( x + y + z) (x + y + z) = (-5+5) + 9

=> (x + y + z)2 = 9

=>\(\) \(\left[{}\begin{matrix}x+y+z=3\\x+y+z=-3\end{matrix}\right.\)

Xét TH 1: x + y + z = 3

Thay x + y + z = 3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:

\(=>\left\{{}\begin{matrix}x.3=-5\\y.3=9\\z.3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

Xét TH 2; x + y + z = -3

Thay x +y + z = -3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:

\(=>\left\{{}\begin{matrix}x.-3=-5\\y.-3=9\\z.-3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-3\\z=\dfrac{-5}{3}\end{matrix}\right.\)

Vậy.......

DD
26 tháng 5 2021

\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)

Dễ thấy \(x,y,z\)và \(x+y+z\)đều khác \(0\).

Suy ra \(\hept{\begin{cases}\frac{x}{z}=-1\\\frac{y}{z}=\frac{9}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-z\\y=\frac{9}{5}z\end{cases}}\)

Thế vào phương trình \(z\left(x+y+z\right)=5\)ta được: 

\(z\left(-z+\frac{9}{5}z+z\right)=5\Leftrightarrow\frac{9}{5}z^2=5\Leftrightarrow z=\pm\frac{5}{3}\).

Suy ra các nghiệm \(\left(-\frac{5}{3},3,\frac{5}{3}\right),\left(\frac{5}{3},-3,-\frac{5}{3}\right)\).

Thử lại đều thỏa mãn.

3 tháng 9 2016

mình sẽ đơn giản cách giải ấy cho cậu

cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5

(x + y + z)2 = 9

chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2

vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3

với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)

tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)

Và trường hợp còn lại (x + y + z) = -3  cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được

x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)

vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình

3 tháng 9 2016

Sory mk nam nay moi len lop 6