Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình sẽ đơn giản cách giải ấy cho cậu
cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5
(x + y + z)2 = 9
chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2
vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3
với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)
tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)
Và trường hợp còn lại (x + y + z) = -3 cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được
x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình
Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9
9=32 hoặc 9=(-3)2
Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)
Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)
Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)
Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+5+9
(x+y+z)(x+y+z)=9
(x+y+z)^2=9
x+y+z=3 hoặc x+y+z=-3
Với x+y+z=3 thì x=-5/3, y=3, z=5/3
Với x+y+z=-3 thì x=5/3, y=-3, z=-5/3
Ta có: x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5
(x+y+z)(x+y+z) = 9
(x+y+z)2 = 9
x+y+z = 3
Ta có: x(x+y+z)=-5 =>x.3= -5 =>x= -5/3
y(x+y+z)=9 =>y.3= 9 =>y= 3
z(x+y+z)= 5 =>z.3=5 =>z=5/3
Vậy x=-5/3 ; y=3 ; z=5/3
\(\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}\)
Cộng theo vế của (1); (2) và (3) ta có:
\(\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=\pm9\)
Xét \(x+y+z=9\)
\(\Rightarrow\begin{cases}x\cdot9=-5\\y\cdot9=9\\z\cdot9=5\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{9}\\y=1\\z=\frac{5}{9}\end{cases}\)
Xét \(x+y+z=-9\)
\(\Rightarrow\begin{cases}x\cdot\left(-9\right)=\left(-5\right)\\y\cdot\left(-9\right)=9\\z\cdot\left(-9\right)=5\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{5}{9}\\y=-1\\z=-\frac{5}{9}\end{cases}\)
Vì x ( x + y + z ) = - 5
y ( x + y + z ) = 9
z ( x + y + z ) = 5
=> Ta có:
x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = -5 + 9 + 5
=>( x + y + z) (x + y + z) = (-5+5) + 9
=> (x + y + z)2 = 9
=>\(\) \(\left[{}\begin{matrix}x+y+z=3\\x+y+z=-3\end{matrix}\right.\)
Xét TH 1: x + y + z = 3
Thay x + y + z = 3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:
\(=>\left\{{}\begin{matrix}x.3=-5\\y.3=9\\z.3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
Xét TH 2; x + y + z = -3
Thay x +y + z = -3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:
\(=>\left\{{}\begin{matrix}x.-3=-5\\y.-3=9\\z.-3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-3\\z=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy.......
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
với x,y,z thuộc số hữu tì ta có
bn tự chép đề tại chỗ này nh a.
từ đề bài ,cộng vế theo vế ta có
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
suy ra (x+y+z)(x+y+z)=9 suy ra (x+y+z)^2=3^2 hay =(-3)^2
suy ra x+y+z=3 hay=-3
xét trường hợp 1 ta có x+y+z=3
suy ra x(x+y+z)=-5 suy ra x=-5/3
suy ra y=9/3=3
suy ra z=5/3
tương tự xét trường hợp thứ hai ta có x+y+z=-3
suy ra x=-5/-5=5/3
suy ra y=9/-3=-3
suy ra z=5/-3=-5/3
chỗ nào ko hiểu thì hỏi mình nha bn
chúc bn học tốt hi hi
bạn dở sbt trang 42 tìm bài 3.5 ở đó là có đáp án b nhé rất ngắn gọn b ạ :)))
Ta cộng cả 3 đẳng thức lại ta đc:
x(x+y+z)+y(x+y+z)+z(x+y+z)=9
<=>(x+y+z)2=9
<=>x+y+z=3
x(x+y+z)=-5
<=>3x=-5
<=>x=-5/3
y(x+y+z)=9
<=>3y=9
<=>y=3
z(x+y+z)=5
<=>3z=5
<=>z=5/3
Vậy x=-5/3;y=3;z=5/3
BẠN TỰ CHÉP LẠI ĐỀ NHA
cộng lại các vế ta có x(x+y+z)+y(x+y+z)+z(x+y+z)=(x+y+z)(x+y+z)=(x+y+z)^2=5+9+5=19
suy ra x+y+z=căng 19 hay bằng âm căng 19
thay x+y+z=căng 19 và x+y+z=âm căng 19 vào các vế đề bài cho , ta có
x= 5/căng 19 hay x=5/âm căng 19
y=9/căng 19 hay y =9/âm căng 19
z=5/căng 19 hay z=5/âm căng 19
chỗ nào bn ko hiểu bn có thể hỏi mình
Ta có :
\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=-5\)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+-5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Rightarrow\left(x+y+z\right)^2=3^2=\left(-3\right)^2\)
Với \(\left(x+y+z\right)=3\); ta có:
\(x=-5:\left(x+y+z\right)=-5:3=-\frac{5}{3}\)
\(y=9:\left(x+y+z\right)=9:3=3\)
\(z=5:\left(x+y+z\right)=5:3=\frac{5}{3}\)
Với \(\left(x+y+z\right)=-3\)
\(x=-5:\left(x+y+z\right)=-5:\left(-3\right)=\frac{5}{3}\)
\(y=9:\left(x+y+z\right)=9:\left(-3\right)=-3\)
\(z=5:\left(x+y+z\right)=5:\left(-3\right)=-\frac{5}{3}\)
x(x+y+z) + y(x+y+z) + z(x+y+z) = (-5) + 9 + 5
suy ra (x+y+z ) ( x+y+z ) = 9
(x+y+z)^2 = 9
x+y+z = -3 hoặc 3
đến đây thay vào đề bài là làm được