Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2018.2019}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow B< 1-\frac{1}{2019}< 1\)
\(\Rightarrow B< 1\)
#)Giải :
Bài 3 :
Gọi số cần tìm là x
Theo đầu bài, ta có :
x : 11 dư 6 => x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
x : 4 dư 1 => x - 1 chia hết cho 4 => n - 1 + 28 = n + 27 chia hết cho 4
x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
Vì x + 27 chia hết cho 11,4 và 19 => x + 27 = BCNN( 11,4,19 ) = 836
=> x = 836 - 27 = 809
Vậy số cần tìm là 809
\(a,\) Ta có: \(S=1+2+2^2+...+2^x\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{x+1}\)
\(\Rightarrow2S-S=2^{x-1}-1\)
\(\Rightarrow S=2^{x+1}-1\)
\(\Rightarrow2^{x+1}-1=2^{2020-1}\)
\(\Rightarrow x=2019\)
Bài 1 :
a, 136 - 6 . [ 23 . 25 - 4 ( 11 - 3 )2 ]
= 136 - 6 . [ 23 . 25 - 4 . 82 ]
= 136 - 6 . [ 8 . 32 - 4 . 64 ]
= 136 - 6 . [ 256 - 256 ]
= 136 - 6 . 0 = 136
Bài 2 :
a, 2448 : n + 36 = 60
2448 : n = 60 - 36
2448 : n = 24
=> n = 2448 : 24
=> n = 102
Vậy n = 102
b, 129 - 9 ( n - 17 ) = 24 . 3
129 - 9 ( n - 17 ) = 16 . 3
129 - 9 ( n - 17 ) = 48
9 ( n - 17 ) = 129 - 48
9 ( n - 17 ) = 81
n - 17 = 9
=> n = 9 + 17
=> n = 26
Vậy n = 26
c, 6n . 2 + 48 = 480
6n . 2 = 480 - 48
6n . 2 = 432
6n = 432 : 2
6n = 216
6n = 63
=> n = 3
Vậy n = 3
Bài 3 :
\(\overline{abc}=11.\left(a+b+c\right)\)
\(a.100+b.10+c=11.a+b.11+c.11\)
\(89.a=b+c.10\)
\(89.a=\overline{cb}\)
Ta có :
\(\overline{ab}< 100\Rightarrow89.a< 100\)
\(\Rightarrow a=1\)
Khi đó : \(a=1\) ta có : \(89=\overline{cb}\)
\(\Rightarrow\begin{cases}c=8\\b=9\end{cases}\)
Vậy số cần tìm là : 198
B1: Tìm giá trị nhỏ nhất của:
a) A = |n - 3| + 2
+) Có: |n - 3| ≥ 0 với mọi n
=> |n - 3| + 2 ≥ 0 + 2 với mọi n
=> A ≥ 2 với mọi n
Dấu "=" xảy ra <=> |n - 3| = 0 <=> n - 3 = 0 <=> n = 3
Vậy Amin = 2 <=> n = 3
b) \(C=\frac{15n-2}{5n-1}=\frac{3\left(5n-1\right)+1}{5n-1}=3+\frac{1}{5n-1}\)
Cmin <=> \(\frac{1}{5n-1}min\)\(\Rightarrow\hept{\begin{cases}\frac{1}{5n-1}< 0\\5n-1\text{ max}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5n-1< 0\\5n\text{ max}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n< \frac{1}{5}\\n\text{ max}\end{cases}}\)
(tớ nghĩ bài này thiếu điều kiện n thuộc Z)
Mà \(n\inℤ\)
\(\Rightarrow n=0\)
\(\Rightarrow C_{min}=-\frac{2}{-1}=2\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmin = 2 <=> n = 0
B2: Tìm giá trị lớn nhất của:
a) A = 4 - (n + 3)2
+) Có: -(n + 3)2 ≤ 0 với mọi n
=> 4 - (n + 3)2 ≤ 4 với mọi n
=> A ≤ 4 với mọi n
Dấu "=" xảy ra <=> -(n + 3)2 = 0 <=> n + 3 = 0 <=> n = -3
Vậy Amax = 4 <=> n = -3
b) \(\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\)
+) Có n2 ≥ 0 với mọi n => n2 + 1 ≥ 0 với mọi n
=> 2|n2 + 1| ≥ 0 với mọi n
\(\Rightarrow-\frac{3}{2\left|n^2+1\right|}\le0\text{ }\forall n \)\(\Rightarrow\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\le\frac{3}{4}\text{ }\forall n\)
Dấu "=" xảy ra <=> n2 = 0 <=> n = 0
Vậy Bmax = \(\frac{3}{4}\) <=> n = 0
c) \(C=\frac{12n+11}{3n+2}=\frac{4\left(3n+2\right)+3}{3n+2}=4+\frac{3}{3n+2}\)
\(\Rightarrow C_{max}\text{ }\Leftrightarrow\text{ }\frac{3}{3n+2}\text{ }\text{m}\text{a}\text{x}\)
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n+2}>0\\3n+2\text{ }min\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3n+2>0\\n\text{ m}\text{in}\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}n>-\frac{2}{3}\\n\text{ }\text{m}\text{i}\text{n}\end{cases}}\)
Mà n thuộc Z => n = 0
\(\Rightarrow C_{max}=\frac{11}{2}\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmax = 5,5 <=> n = 0