Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).
Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).
\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)
\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)
Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)
\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)
\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)
Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)
Chúc bạn học tốt ~
a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất
Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)
\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)
Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)
Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)
b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:
\(5x^2+4x+1=\left(5x^2+4x\right)+1\)
\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)
\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)
Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)
ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé
Ta có: x2+2xy+4x+4y+3y2+3=0
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+2y^2+3=0\)
\(\Leftrightarrow[\left(x+y\right)^2+4\left(x+y\right)+4]+2y^2=1\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(y^2\ge0\Rightarrow1-2y^2\le1\)
\(\Rightarrow B^2=\left(x+y+2\right)^2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}B\le1\\B\ge-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B_{max}=1\\B_{min}=-1\end{matrix}\right.\)
\(x^2+2xy+4x+4x+3y^2+3=0\\ \Leftrightarrow\left(x+y\right)^2+2.\left(x+y\right).2+4=1-2y^2\\ \Leftrightarrow\left(x+y+2\right)^2=1-2y^2\le1\\ \Rightarrow\left(x+y+2\right)^2\le1\)
\(\Rightarrow-1\le x+y+2\le1\\ \)
\(N=5x^2+4y^2+4xy+4x\)
\(N=\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)-1\)
\(N=\left(x+2y\right)^2+\left(2x+1\right)^2-1\)
Mà \(\left(x+2y\right)^2\ge0\forall x;y\)
\(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge-1\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+2y=0\\2x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...
Ta có:
\(I=y^2+4x+5x^2-2xy\)
\(I=4x^2+4x+1+x^2-2xy+y^2-1\)
\(I=\left(2x+1\right)^2+\left(x-y\right)^2-1\)
Mà: \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}\Rightarrow\left(2x+1\right)^2+\left(x-y\right)^2\ge0\left(\forall x,y\in R\right)}\)
\(\Rightarrow I=\left(2x+1\right)^2+\left(x-y\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+1=0\\x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=y\end{cases}\Leftrightarrow}x=y=-\frac{1}{2}}\)
Vậy Min I = -1 khi x = y = -1/2
Bài này không suy ra được GTLN nha bạn