Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2.(x^2-4x+4) - 18 = 2.(x-2)^2 - 18 >= -18
Dấu "=" xảy ra <=> x-2 = 0 <=> x=2
Vậy Min A = -18 <=> x=2
D= 2( \(x^2\)+5x-\(\dfrac{1}{2}\))
D= 2( \(x^2\)+ 2. \(\dfrac{5}{2}\)x + \(\dfrac{25}{4}\)-\(\dfrac{27}{4}\))
D= 2( x+\(\dfrac{5}{2}\))\(^2\)+ \(\dfrac{27}{8}\) lớn hơn hoặc bằng \(\dfrac{27}{8}\)
vậy min P = \(\dfrac{27}{8}\) <=> x = -\(\dfrac{5}{2}\)
e)\(E=5x-x^2=-x^2+5x=-x^2+2\cdot x\cdot\dfrac{5}{2}-\dfrac{25}{4}+\dfrac{25}{4}=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
(Vì: \(\left(x-\dfrac{5}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{5}{2}\right)^2\le0\))
Vậy \(MaxE=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) Ta có : \(A=x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vạy GTNN của \(A=\frac{11}{4}\) tại \(x=\frac{1}{2}\)
b) \(B=2x^2+10x-2\)
\(=2.\left(x^2+5x-1\right)\)
\(=2.\left[\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{29}{4}\right]\)
\(=2.\left(x+\frac{5}{2}\right)^2-\frac{29}{2}\ge-\frac{29}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{5}{2}\)
Vạy GTNN của \(B=-\frac{29}{2}\) tại \(x=-\frac{5}{2}\)
c) \(C=19-6x-9x^2\)
\(=-\left(9x^2+6x\right)+19\)
\(=-\left[\left(3x\right)^2+2.3x.1+1\right]+20\)
\(=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy GTLN của \(C=20\) khi \(x=-\frac{1}{3}\)
Đăng một lần thôi bạn :v Tụi mình thấy và làm cho bạn mà :))
A = x2 - x + 3
= ( x2 - x + 1/4 ) + 11/4
= ( x - 1/2 )2 + 11/4
( x - 1/2 )2 ≥ 0 ∀ x => ( x - 1/2 )2 + 11/4 ≥ 11/4
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinA = 11/4 <=> x = 1/2
B = 2x2 + 10x - 2
= 2( x2 + 5x + 25/4 ) - 29/2
= 2( x + 5/2 )2 - 29/2
2( x + 5/2 )2 ≥ 0 ∀ x => 2( x + 5/2 )2 - 29/2 ≥ -29/2
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinB = -29/2 <=> x = -5/2
C = 19 - 6x - 9x2
= -( 9x2 + 6x + 1 ) + 20
= -( 3x + 1 )2 + 20
-( 3x + 1 )2 ≤ 0 ∀ x => -( 3x + 1 )2 + 20 ≤ 20
Đẳng thức xảy ra <=> 3x + 1 = 0 => x = -1/3
=> MaxC = 20 <=> x = -1/3
áp dụng CT này vô nha:
\(A=\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\left(a\ne0\right)\)
nếu a<0 thì \(A\le\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
nếu a>0 thì \(A\ge\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
công thức này được áp dụng dạng bài tìm GTLN và GTNN của tam thức bậc 2 nha
áp dụng câu đầu:
\(A=2x^2-8x-10\\ A=2\left(x+\dfrac{-8}{2.2}\right)^2+\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}\ge\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}=-18\)
đẳng thức xảy ra khi \(x=-\dfrac{-8}{2.2}=2\)
vậy MIN A=-18 tại x=2
không tin thì bạn thử lại bằng máy tính nha :))