\(A=x^2-2x+2+4y^2+4y\)

\(B=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(A=x^2-2x+2+4y^2+4y\)

\(A=\left(x^2-2x\cdot1+1\right)+\left(4y^2+4y\right)+1\)

\(A=\left(x-1\right)^2+4\left(y^2+y\right)+1\)

Do \(\left(x-1\right)^2>\) hoặc bằng 0 và \(4\left(y^2+y\right)\)> hoặc bằng 0

nên để A đạt GTNN thì \(\left\{{}\begin{matrix}x-1=0\\y^2+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

13 tháng 7 2018

Vậy A\(_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

1 tháng 12 2019

Ta có:

C = 13x2 + 4y2 - 12xy - 2x - 4y + 10

C = (9x2 - 12xy + 4y2) + 2(3x - 2y) + 1 + (4x2 - 8x + 4) + 5

C = (3x - 2y)2 + 2(3x - 2y) + 1 + 4(x2 - 2x + 1) + 5

C = (3x - 2y + 1)2 + 4(x - 1)2 + 5 \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-2y+1=0\\x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}2y=3x+1\\x=1\end{cases}}\) <=> \(\hept{\begin{cases}2y=3.1+1=4\\x=1\end{cases}}\)<=> \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)

Vậy MinC = 5 <=> x = 1 và y = 2

1 tháng 12 2019

SOS dao lam có thể sử dụng trong bài này!

Chú ý:

+)\(C=2\left(3x-2y+1\right)^2+5-\left(x-2y+3\right)\left(5x-2y-1\right)\)

+) \(C=8\left(x-1\right)^2+5+\left(x-2y+3\right)\left(5x-2y-1\right)\)

Vậy ta tìm được: \(C=\frac{C+C}{2}=\frac{2\left(3x-2y+1\right)^2+8\left(x-1\right)^2+10}{2}\)

\(=\left(3x-2y+1\right)^2+4\left(x-1\right)^2+5\ge5\)

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

c: =>(2x+3y-1)^2+(2x-3y)=0

=>2x-3y=0 và 2x+3y=1

=>x=1/4; y=1/6

d: =>2y-3=0 và 2x+3y-1=0

=>y=3/2 và 2x=1-3y=1-9/2=-7/2

=>x=-7/4 và y=3/2

\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)

Dấu '=' xảy ra khi x=-1

\(B=-\left(x^2+4x-1\right)\)

\(=-\left(x^2+4x+4-5\right)\)

\(=-\left(x+2\right)^2+5< =5\)

Dấu '=' xảy ra khi x=-2

\(C=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21< =21\)

Dấu '=' xảy ra khi x=-4

\(D=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=-1/2

1 tháng 9 2019

\(F=-x^4+x^2-4y^2+2x-4y+2000.\)

\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)

\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 1:

a)

\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)

\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)

\(\geq 2013\)

Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)

b)

\(B=2x^2+5y^2+4xy-6+5x-9\)

\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)

Vậy GTNN của $B$ là $\frac{-485}{24}$

Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)

c)

\(C=x^2+xy+y^2-3x-3y+2018\)

\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)

\(\geq \frac{8060}{4}=2015\)

Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)

\(=(x-1)^2+(2y+1)^2-7\geq -7\)

\(\Rightarrow A\leq 7\)

Vậy GTLN của $A$ là $7$.

Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)

b)

ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)

\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)

Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm

\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)

\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)

Vậy $B_{\max}=\frac{97}{22}$

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

28 tháng 9 2018

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

28 tháng 9 2018

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 

\(A=x^2-2x+1+4y^2+4y+1\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2>=0\)

Dấu '=' xảy ra khi x=1 và y=-1/2