Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
a ) \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
b ) \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c ) \(x^4+2x^3-4x-4\)
\(=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
d ) \(x^2\left(1-x^2\right)-4-4x^2\)
\(=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2\)
\(=\left(x-x^2-2\right)\left(x+x^2+2\right)\)
e ) Đề bài ko rõ
f ) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
*Trả lời:
a) Có vẻ như đề sai nên mình sửa lại:
\(2x^2y+2xy^2-x-y=\left(2x^2y+2xy^2\right)-\left(x+y\right)=2xy\cdot\left(x+y\right)-\left(x+y\right)=\left(2xy-1\right)\left(x+y\right)\)
b) \(8x^3-12x^2+6x-1=\left(2x\right)^3-3\cdot4x^2+3.2x-1=\left(2x-1\right)^3\)
c)\(4x^2-4xy+y^2-9=\left(4x^2-4xy+y^2\right)-9=\left(2x-y\right)^2-3^2=\left(2x-y-3\right)\left(2x-y+3\right)\)
e)\(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2y+y^2=\left(5x^2-y\right)^2\)
h)\(x^2-7xy+10y^2=x^2-2xy-5xy+10y^2=\left(x^2-2xy\right)-\left(5xy-10y^2\right)=x\left(x-2y\right)-5y\left(x-2y\right)=\left(x-5y\right)\left(x-2y\right)\)
Bài 2:
a, \(x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1>0\)
\(\Rightarrowđpcm\)
b, \(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1>0\)
\(\Rightarrowđpcm\)
c, \(x^2-4x+7=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
\(\Rightarrowđpcm\)
d, \(x^2+y^2-2x+4y+5\)
\(=x^2-2x+1+y^2+4y+4\)
\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
\(\Rightarrowđpcm\)
Ép người quá đáng >.<
Bài 1:
a, \(-\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)+\left(2x^2+1\right)\)
\(=-\left(4x^4-4x^3+2x^2+4x^3-4x^2+2x+2x^2-2x+1\right)+2x^2+1\)
\(=-\left(4x^4+1\right)+2x^2+1=-4x^4+2x^2\)
b, \(\left(x^2+x+2\right)^2+\left(x-1\right)^2-2\left(x^2+x+2\right)\left(x-1\right)\)
\(=\left(x^2+x+2-x+1\right)^2=\left(x^2+3\right)^2\)
d, \(-125x^3+225x^2-135x+27\)
\(=-\left(125x^3-225x^2+135x-27\right)\)
\(=-\left(125x^3-75x^2-150x^2+90x+45x-27\right)\)
\(=-\left[25x^2\left(5x-3\right)-30x\left(5x-3\right)+9\left(5x-3\right)\right]\)
\(=-\left[\left(5x-3\right)\left(25x^2-15x-15x+9\right)\right]\)
\(=-\left(5x-3\right)^3\)
1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=-1
\(B=-\left(x^2+4x-1\right)\)
\(=-\left(x^2+4x+4-5\right)\)
\(=-\left(x+2\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-2
\(C=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
\(D=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=-1/2