\(\frac{4x}{\left(-1\right)\left(x-1\right)}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015

= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010

= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010

=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)

30 tháng 1 2019

a) \(x^2+5y^2+2xy-4x-8y+2015\)

\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)

\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)

\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy.....

30 tháng 1 2019

b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy....

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

29 tháng 7 2020

E = \(\frac{x^4+1}{\left(x^2+1\right)^2}\)

để E lớn nhất 

thì \(\left(x^2+1\right)^2\) phải nhỏ nhất

mà \(\left(x^2+1\right)^2\)> 0 và khác 0 ( vì là mẫu số )

=> \(\left(x^2+1\right)^2=1\)

=> \(x^2+1=1\)

=> \(x^2=0\)

=> x = 0

để E đạt giá trị lớn nhất thì x = 0

29 tháng 7 2020

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}\le\frac{x^4+1}{x^4+1}=1\\ \Rightarrow maxE=1\Leftrightarrow x=0\)

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}=1-\frac{2x^2}{x^4+2x^2+1}\\ \ge1-\frac{2x^2}{2x^2+2x^2}=\frac{1}{2}\\ \Rightarrow minE=\frac{1}{2}\Leftrightarrow x=1\)