Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x-6\)
\(A=\left(x^2-2x+1\right)-7\)
\(A=\left(x-1\right)^2-7\)
Mà \(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1
a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)
Dấu '=' xảy ra khi x=1
b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)
Dấu '=' xảy ra khi x=1/2
c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1/3
d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=-6
e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x=3/2
1.
A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)
\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)
Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)
<=> \(\left|x-1\right|+\left|x-3\right|\)
Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:
\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
đẳng thức xảy ra khi \(1\le x\le3\)
Vậy ................
1.
a)
\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)
Đẳng thức xảy ra \(\Leftrightarrow x=2\)
b)
\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
c) ĐK: \(x\ne-1\)
\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)
\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)
\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
a) \(A=25x^2-10x+9\)
\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)
\(A=\left(5x-1\right)^2+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
a. x2 - 3x + 5
= x2 - 2.x.3/2 + 9/4 + 5 - 9/4
= (x - 3/2)2 + 11/4 \(\ge\)11/4
Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2
b. 4x2 + 4x + 2
= (2x)2 + 2.2x.1 + 1 + 1
= (2x + 1)2 + 1 \(\ge\)1
Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2
c. x2 - 20x + 101
= x2 - 2.x.10 + 100 + 1
= (x - 10)2 + 1 \(\ge\)1
Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
a. 4x2 - x + 10
= 4x2 - x + 1/16 + 159/16
= 4 ( x - 1/8 )2 + 159/16
Vì \(\left(x-\frac{1}{8}\right)^2\ge0\forall x\)=> \(4\left(x-\frac{1}{8}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
Dấu "=" xảy ra <=> \(4\left(x-\frac{1}{8}\right)^2=0\Leftrightarrow x-\frac{1}{8}=0\Leftrightarrow x=\frac{1}{8}\)
Vậy GTNN của bt trên = 159/16 <=> x = 1/8
b. 2x2 - 5x - 1
= 2x2 - 5x + 25/8 - 33/8
= 2 ( x - 5/4 )2 - 33/8
Vì \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)=> \(2\left(x-\frac{5}{4}\right)^2-\frac{33}{8}\ge-\frac{33}{8}\)
Dấu "=" xảy ra <=> \(2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Vậy GTNN của bt trên = - 33/8 <=> x = 5/4
4x2 - x + 10
= 4( x2 - 1/4x + 1/64 ) + 159/16
= 4( x - 1/8 )2 + 159/16 ≥ 159/16 ∀ x
Đẳng thức xảy ra <=> x - 1/8 = 0 => x = 1/8
Vậy GTNN của biểu thức = 159/16 <=> x = 1/8
2x2 - 5x - 1
= 2( x2 - 5/2x + 25/16 ) - 33/8
= 2( x - 5/4 )2 - 33/8 ≥ -33/8 ∀ x
Đẳng thức xảy ra <=> x - 5/4 = 0 => x = 5/4
Vậy GTNN của biểu thức = -33/8 <=> x = 5/4
a) Để x-x^2 bé nhất thì x^2 bé nhất => x^2 = 0 => x= 0
thay x =0 vào x-x^2 , có 0 - 0^2 = 0
Vậy giá trị bé nhất của x-x^2 =0 tại x= 0
b) 4x-x^2 ( làm như trên )
\(Đặt:A=x-x^2\)
\(\Rightarrow-A=x^2-x\Rightarrow-A+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-A\ge-\frac{1}{4}\Rightarrow A\le\frac{1}{4}\)
đó là max à nha