Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
\(H\left(x\right)=x+3\)
\(\Rightarrow H\left(x\right)=0\Leftrightarrow x+3=0\Rightarrow x=-3\)
\(T\left(x\right)=12-\dfrac{1}{3}x\)
\(\Rightarrow T\left(x\right)=0\Leftrightarrow12-\dfrac{1}{3}x=0\Rightarrow\dfrac{1}{3}x=12\Rightarrow x=36\)
\(B\left(x\right)=x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
\(\Rightarrow B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(C\left(x\right)=42x-4x^2=2x\left(21-2x\right)\)
\(\Rightarrow C\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\21-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=10\dfrac{1}{2}\end{matrix}\right.\)
MONG CÂU TRẢ LỜI NÀY GIÚP BN
#chúc_bn_học_tốt
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
tìm nghiệm của đa thức sau:
a,\(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)
Xét \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) \(=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3}x^2+\dfrac{3}{5}=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3x}x^2=-\dfrac{3}{5}\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{9}{25}\\\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{9}{25}\\x=-\dfrac{9}{25}\end{matrix}\right.\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) là \(\left\{\dfrac{9}{25};-\dfrac{9}{25};\sqrt{2};-\sqrt{2}\right\}\)
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2