Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=3x^2+2y^2+2xy-10x-10y+2030\)
\(A=3x^2+2\left(y-5\right)x+2y^2-10y+2030\)
\(\Leftrightarrow3x^2+2\left(y-5\right)x+2y^2-10y+2030+A\ge0\)
\(\Delta'=\left(y-5\right)^2-3\left(2y^2-10y+2030-A\right)\ge0\)
\(\Leftrightarrow-5y^2+20y-6065+3A\ge0\)
\(\Leftrightarrow3A\ge5y^2-20y+6065=5\left(y^2-4y+4\right)+6045\)
\(\Leftrightarrow3A\ge5\left(y-2\right)^2+6045\)
\(\Leftrightarrow A\ge\frac{5}{3}\left(y-2\right)^2+2015\ge2015\)
Vậy \(MinA=2015\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(A=3x^2+2\left(y-5\right)x+2y^2-10y+2030\)
\(\Leftrightarrow3x^2+2\left(y-5\right)x+2y^2-10y+2030-A=0\)
Để tồn tại x, y thỏa mãn, ta phải có:
\(\Delta'=\left(y-5\right)^2-3\left(2y^2-10y+2030-A\right)\ge0\)
\(\Leftrightarrow-5y^2+20y-6065+3A\ge0\)
\(\Leftrightarrow3A\ge5y^2-20y+6065=5\left(y^2-4y+4\right)+6045\)
\(\Leftrightarrow3A\ge5\left(y-2\right)^2+6045\Rightarrow A\ge\dfrac{5}{3}\left(y-2\right)^2+2015\ge2015\)
\(\Rightarrow A_{min}=2015\) khi \(y=2\Rightarrow x=1\)
Làm theo kiểu lớp 8 thì như sau:
\(A=2y^2+2y\left(x-5\right)+3x^2-10x+2030\)
\(A=2\left(y^2+2y.\dfrac{\left(x-5\right)}{2}+\left(\dfrac{x-5}{2}\right)^2\right)+\dfrac{5}{2}\left(x^2-2x+1\right)+2025\)
\(A=2\left(y+\dfrac{x-5}{2}\right)^2+\dfrac{5}{2}\left(x-1\right)^2+2025\ge2025\)
\(\Rightarrow A_{min}=2025\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-1=0\\y+\dfrac{x-5}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
Ta có: \(A=x^2-2xy+2y^2+2x-10y+17\)
\(=x^2-2xy+y^2+y^2+2x-2y-8y+1+16\)
\(=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\)
\(=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Ta có: \(\left(x-y+1\right)^2\ge0\forall x,y\)
\(\left(y-4\right)^2\ge0\forall y\)
Do đó: \(\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\) là 0 khi x=3 và y=4
Thử xem lại đề xem, 2xy hay là -2xy, -10x hay là 10x, -10y hay là 10y ?
đề đúng là như vậy mà