K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(C=\frac{2020}{2020-2x-x^2}=\frac{2020}{2021-\left(x+1\right)^2}\ge\frac{2020}{2021}\)

Dấu \("="\) xảy ra khi \(x=-1\)

30 tháng 3 2021

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}=\frac{\left(t-1\right)^2+2016}{t^2}=\frac{t^2-2t+2017}{t^2}\)

\(=1-\frac{2}{t}+\frac{2017}{t^2}=1-2a+2017a^2=2017\left(a^2-2.\frac{1}{4034}+\frac{1}{4034}^2\right)-\frac{2017}{4034^2}+1\)

\(=2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017^3}\ge1-\frac{1}{2017^3}\)

tự xét dấu = 

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(t-1\right)^2+2016}{1^2}\)

\(\Leftrightarrow\frac{t^2-2t+2017}{t^2}\)

\(\Leftrightarrow1-\frac{2}{t}+\frac{2017}{t^2}\)

\(\Leftrightarrow1-2a+2017a^2\)

\(\Leftrightarrow a^2-2\times[\frac{1}{4034}+\frac{1^2}{4034}]-\frac{2017}{4034^2}+1\)

\(\Leftrightarrow2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017}^3\)

phần cuối tự làm nha

26 tháng 6 2019

TL:

C=\(\frac{2020}{-\left(x^2+2x-2020\right)}\) 

 =\(\frac{2020}{-\left(x^2+2x+1-2021\right)}=\frac{2020}{-\left(x+1\right)^2+2021}\) 

Để Cmin thì \(-\left(x+1\right)^2+2021\) lớn nhất

vì \(-\left(x+1\right)^2+2021\le2021\) =>-(x+1)+2021 lớn nhất =2021

vậy Cmin=\(\frac{2020}{2021}\)

11 tháng 8 2015

\(B=5x^2+2y^2+4xy-2x+4y+2020\)

\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)

\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)

\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)

11 tháng 8 2015

=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015

=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]

=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015

giá trị nhỏ nhất là 2015

30 tháng 6 2019

\(P=\frac{2020}{x^2+y^2}+\frac{2019}{xy}\)

\(P=\frac{2020}{\left(x+y\right)^2-2xy}+\frac{2019}{xy}\)

\(P=\frac{-2020}{2xy-4}+\frac{2019}{xy}\)

\(P=\frac{-1010}{xy-2}+\frac{2019}{xy}\)

Áp dụng bđt AM-GM : \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{4}{4}=1\)

\(P\ge\frac{-1010}{1-2}+\frac{2019}{1}=3029\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

1 tháng 7 2019

Bonking cách em nè:)Gọn hơn xíu:v

\(P=\frac{2020}{x^2+y^2}+\frac{1010}{xy}+\frac{1009}{xy}\)\(=2020\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1009}{xy}\)

\(\ge\frac{2020.4}{\left(x+y\right)^2}+\frac{1009}{\frac{\left(x+y\right)^2}{4}}=2020+1009=3029\)

Đẳng thức xảy khi x = y = 1

Vậy..

18 tháng 3 2018

Ta Có :

\(M=x^2+2y^2+2xy-2x-6y+2020\)

\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)

\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)

\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)

\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)

\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)

Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)

\(\left(y-2\right)^2\ge0\) với \(\forall y\)

\(\Rightarrow M\ge2015\) với \(\forall x,y\)

Vậy GTNN của M là 2015 đạt được khi

\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

tik mik nha !!!

2 tháng 12 2017

x2 + 2y2 + 2xy - 2x - 6y + 2020

= x2 + 2xy + y2 + y2 - 2x - 6y + 2020

= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016

= (x+y)2 + (y-z)2 - 2(x+y) + 2016

= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015

= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015

Dấu "=" xảy ra khi x+y-1=0 và y-2=0

(=) x=-1 y=2

Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2

Chúc bạn học tốt ^^