Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lx-1,5l+l2,5-xl=0
=>lx-1,5l=-l2,5-xl
mà lx-1,5l>(=)0=>-l2,5-xl>(=)0
=>l2,5-xl=0=>x=2,5
=>lx-1,5l+l2,5-xl=1(trái giả thiết)
Vậy không có x thỏa mãn lx-1,5l+l2,5-xl=0
|x-1,5| + | 2,5 - x| = 0
=> |x - 1,5| > hoặc = 0 và | 2.5 - x| > hoặc = 0, vs mọi x
Nên |x - 1,5 | =0 và | 2,5 - x| = 0
=> x-1,5 = 0 và 2,5 - x =0
=>x = 1,5 và x = 2,5
Vậy x vô nghiệm
Ta có : \(\left|x+3\right|\ge0\forall x\)
\(\left|2x-5\right|\ge0\forall x\)
\(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|\ge0\forall x\)
Dấu = xảy ra khi : \(\left|x+3\right|=0\); \(\left|2x-5\right|=0\); \(\left|x-7\right|=0\)
* \(\left|x+3\right|=0\Rightarrow x=-3\)
*\(\left|2x-5\right|=0\Rightarrow x=\frac{5}{2}\)
*\(\left|x-7\right|=0\Rightarrow x=7\)
TH1 : Với x = - 3 ta thay vào biểu thức đề bài cho ta được:
\(\left|-3+3\right|+\left|2.\left(-3\right)-5\right|+\left|-3-7\right|\)
\(=0+11+10=21\)
TH2 : Với \(x=\frac{5}{2}\)ta thay vào biểu thức đề bài cho ta được:
\(\left|\frac{5}{2}+3\right|+\left|2.\frac{5}{2}-5\right|+\left|\frac{5}{2}-7\right|\)
\(=\frac{11}{2}+0+\frac{9}{2}=10\)
TH3 : Với x = 7 ta thay vào biểu thức đề bài cho ta được:
\(\left|7+3\right|+\left|2.7-5\right|+\left|7-7\right|\)
\(=10+9+0=19\)
Vậy với \(x=\frac{5}{2}\)thì \(\left|x+3\right|+\left|2.x-5\right|+\left|x-7\right|\)nhỏ nhất và = 10
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
a) \(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\\3,5-x=-1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3,5-1,3\\x=3,5+1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2,2\\x=4,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\\x-0,2=-1,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,2+0,2\\x=-1,2+0,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,4\\x=-1\end{matrix}\right.\)
\(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\Rightarrow x=2,2\\3,5-x=-1,3\Rightarrow x=4,8\end{matrix}\right.\)
\(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\Rightarrow x=1,4\\x-0,2=-1,2\Rightarrow x=-1\end{matrix}\right.\)
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-1,5\right|=0\Rightarrow x=1,5\\\left|2,5-x\right|=0\Rightarrow x=2,5\end{matrix}\right.\)
\(1,5\ne2,5\Rightarrow x\in\varnothing\)
\(\)\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Với mọi \(x\in R\) thì:
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix} \left|x-1,5\right|=0\\ \left|2,5-x\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Khi đó không tồn tại giá trị x
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\sqrt{\dfrac{1}{6}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\sqrt{\dfrac{1}{6}}\\x=\dfrac{1}{2}-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\sqrt{\dfrac{1}{6}=?}\)
mk ko hiểu Linh Nguyễn
mk chưa hk đến căn
theo tính chất của trị tuyệt đối
=> |x-1,5| và |2,5-x| >= 0
nếu lớn hơn 0 thì ko thỏa mãn
=> phải =0
=>
|x-1,5|=0 | |2,5-x|=0 |
x=1,5 | x=2,5 |
=>x thuộc {1,5; 2,5}
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-1,5=0\\2,5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}}\)
@@@@@
\(\left|x-1,5\right|+\left|2,5+x\right|=0\)
\(\Rightarrow\left|x-1,5\right|\ge0\)
\(\Rightarrow\left|2,5-x\right|\ge0\)
Nên : + ) \(x-1,5=0\)
\(\Leftrightarrow x=1,5\)
+ ) \(2,5-x=0\)
\(\Leftrightarrow x=2,5\)
Ta có : \(1,5+2,5\ne0\)
Vậy x vô nghiệm .