Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)
\(\Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\)
\(6x-42=7y-42\)
\(6x=7y\Leftrightarrow x=\dfrac{7}{6}y\)
\(x=-4:\left(7-6\right).7=-28\)
\(y=-28-4=-24\)
b tương tự
Giải:b)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\) nên \(6\left(x-7\right)=7\left(y-6\right)\)
Do đó \(6x-42=7y-42\) nên \(6x=7y\)
Suy ra \(6x-6y=y\) hay \(6\left(x-y\right)=y\)
Nên 6.(-4) = y
Vậy y = -24, x = \(\dfrac{7.\left(-24\right)}{6}\)= -28
c)
\(\dfrac{x+3}{y+5}=\dfrac{3}{5}\) nên \(5\left(x+3\right)=3\left(y+5\right)\)
Do đó \(5x+15=3y+15\) nên \(5x=3y\)
Suy ra \(5x+5y=3y+5y\)
\(5\left(x+y\right)=8y\)
\(5.16=8y\)
Nên \(y=\dfrac{5.16}{8}=\dfrac{80}{8}=10\)
Vậy y = 10, x = 16 - 10 =6
a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :
\(12⋮n\)
\(\Leftrightarrow n\inƯ\left(12\right)\)
\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)
Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm
b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :
\(15⋮n-2\)
\(\Leftrightarrow x-2\inƯ\left(15\right)\)
Tới đây tự lập bảng zồi làm típ!
c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :
\(8⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(8\right)\)
Lập bảng rồi làm nhs!
\(=\dfrac{2}{2}\).(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))
=2.(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))
=2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\))
=2.[(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\))
=2.[\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)]
2.[(\(\dfrac{1}{3}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{4}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x}\))+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]
=2.[0+0+...+0+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]
=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))
=2.(\(\dfrac{1.x+1-1.2}{2.x+1}\))
=2.(\(\dfrac{x+1-2}{2x}\))=2.\(\dfrac{x-1}{2x}\)=\(\dfrac{2.\left(x-1\right)}{2x}\)=\(\dfrac{2x-2}{2x}\)
\(\dfrac{2x-2}{2x}\)=\(\dfrac{2014}{2016}\)\(\Rightarrow\)(2x-2).2016=2014.2x=4032x-4032=4028x
\(\Rightarrow\)4032x-4028x=4x=4032\(\Rightarrow\)x=4032:4=1008
Đặt A=\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x+1\right)}\)
\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}\)
\(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x.\left(x+1\right)}\)
1. Tìm GTNN
a) \(B=\left|3x+5\right|\)
\(\Rightarrow B=\left|3x+5\right|\ge0\)
Vậy GTNN của \(B=\left|3x+5\right|\)\(=0\) khi x=\(\dfrac{-5}{3}\)
b) \(C=4.\left|3+2x\right|+1\)
\(\Rightarrow\)\(C=4.\left|3+2x\right|+1\)\(\ge1\)
Vậy GTNN của \(C=4.\left|3+2x\right|+1\)\(=1\) khi x=\(\dfrac{-3}{2}\)
\(B=\left|3x+5\right|\)
\(\left|3x+5\right|\ge0\)
\(B_{MIN}\)
\(\Rightarrow B_{MIN}=0\)khi \(\left|3x+5\right|=0\)
\(C=4\left|3+2x\right|+1\)
\(\left|3+2x\right|\ge0\Rightarrow4\left|3+2x\right|\ge0\)
\(C_{MIN}\Rightarrow\left|3+2x\right|=0\Rightarrow4\left|3+2x\right|=0\)
\(C_{MIN}=0+1=1\)
\(C_{MIN}=1\)khi \(4\left|3+2x\right|=0\)
a)\(\dfrac{-1}{4}\cdot13\dfrac{9}{11}-0,25\cdot6\dfrac{2}{11}\)
\(=\dfrac{-1}{4}\cdot\dfrac{152}{11}-\dfrac{1}{4}\cdot\dfrac{68}{11}\)
=\(\dfrac{1}{4}\cdot\left(\dfrac{-152}{11}-\dfrac{68}{11}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{-220}{11}=-5\)
\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)
Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)
\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)
\(\Rightarrow A=\dfrac{36}{49}\)
\(\)\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Với mọi \(x\in R\) thì:
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix} \left|x-1,5\right|=0\\ \left|2,5-x\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Khi đó không tồn tại giá trị x
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\sqrt{\dfrac{1}{6}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\sqrt{\dfrac{1}{6}}\\x=\dfrac{1}{2}-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\)
\(\sqrt{\dfrac{1}{6}=?}\)
mk ko hiểu Linh Nguyễn
mk chưa hk đến căn