K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

NV
15 tháng 10 2019

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)

\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)

\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)

\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)

\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)

\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)

\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)

12 tháng 7 2018

a) \(A= 2x^2- 3x +1\)

\(=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{1}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

Vậy Amin = \(-\dfrac{1}{8}\) khi \(x=\dfrac{3}{4}\)

b) \(B= 4x^2 +7x + 13\)

\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{7}{4}+\dfrac{49}{16}+\dfrac{159}{16}\)

\(=\left(2x+\dfrac{7}{4}\right)^2+\dfrac{159}{16}\ge\dfrac{159}{16}\)

Vậy Bmin = \(\dfrac{159}{16}\) khi \(x=-\dfrac{7}{8}\)

c) \(C= 5-8x+x^2\)

\(=x^2-2\cdot x\cdot4+16+9\)

\(=\left(x-4\right)^2+9\ge9\)

Vậy Cmin = 9 khi x = 4

d) \(D = (x-1)(x+2)(x+3)(x+6)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy Dmin = - 36 khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

a) Ta có: \(A=x^2-5x+11\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)

hay \(x=\frac{5}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\)\(\frac{19}{4}\) khi \(x=\frac{5}{2}\)

b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+65\right)\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\)

Ta có: \(\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x-7=0

hay x=7

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7

14 tháng 10 2018

bài 1

a) \(7x\left(5x-1\right)+5x-1=\left(5x-1\right)\left(7x+1\right)\)

b) \(4xy-4x^2-y^2+25=25-\left(4x^2-4xy+y^2\right)\)

\(=5^2-\left(2x-y\right)=\left(5-2x+y\right)\left(5+2x-y\right)\)

c) \(2x^2-2y+xy-4x=\left(2x^2+xy\right)-\left(2y+4x\right)\)

\(=x^2\left(2x+y\right)-2\left(2x+y\right)=\left(2x+y\right)\left(x^2-2\right)\)

d) \(3x^2-7x+2=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

14 tháng 10 2018

bài 2

a) * Rút gọn:

\(Q=3\left(2x-1\right)^2+2\left(2x+3\right)\left(x-1\right)-\left(x-3\right)\left(x+3\right)\)

\(Q=\left[3\left(4x^2-4x+1\right)\right]+\left[2\left(2x^2-2x+3x-3\right)\right]-\left(x^2-9\right)\)

\(Q=\left(12x^2-12x+3\right)+\left(4x^2-4x+6x-6\right)-\left(x^2-9\right)\)

\(Q=12x^2-12x+3+4x^2-4x+6x-6-x^2+9\)

\(Q=15x^2-10x+6=5x\left(3x-2\right)+6\)

Thế x = 2 vào biểu thức Q ta được:

\(Q=5\cdot2\left(3\cdot2-2\right)+6=46\)

b) \(Q=5x\left(3x-2\right)+6=6\)

\(\Leftrightarrow5x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

19 tháng 6 2019

a)

\(x^3-5x^2+8x-4\\ =\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x-1\right)\left(x^2-4x+4\right)\\ =\left(x-1\right)\left(x-2\right)^2\)

b)

\(x^3-7x+6\\ =\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\\ =x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x-3\right)\)

c)

\(x^3+2x^2+4x+3\\ =\left(x^3+x^2\right)+\left(x^2+x\right)+\left(3x+3\right)\\ =x^2\left(x+1\right)+x\left(x+1\right)+3\left(x+1\right)\\ =\left(x+1\right)\left(x^2+x+3\right)\)

d)

\(2x^3-x^2-5x-2\\ =\left(2x^3-4x^2\right)+\left(3x^2-6x\right)+\left(x-2\right)\\ =2x^2\left(x-2\right)+3x\left(x-2\right)+\left(x-2\right)\\ =\left(x-2\right)\left(2x^2+3x+1\right)\\ =\left(x-2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]\\ =\left(x-2\right)\left(x+1\right)\left(2x+1\right)\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

3 tháng 12 2018

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

3 tháng 12 2018

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)