Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\sqrt{2x-1}=t\ge0\Rightarrow x=\frac{t^2+1}{2}\)
\(\Rightarrow A=\frac{2t^2+6t+4}{t^2+4t+3}=\frac{2\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{2\left(t+2\right)}{t+3}=2-\frac{2}{t+3}\ge2-\frac{2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(t=0\Leftrightarrow x=\frac{1}{2}\)
a.\(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\sqrt{x}-1\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b.\(Q=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)(do \(x\sqrt{x}-1=\sqrt{x}^3-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\))
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
c.Để \(Q=\frac{2}{7}\) thì \(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)
\(\Leftrightarrow7\sqrt{x}=2x+2\sqrt{x}+2\)
\(\Leftrightarrow2x-5\sqrt{x}+2=0\)
\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)
\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\2\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)(Thỏa mãn đkxđ)
đkxđ \(x\ne1;x\ge0\)
\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)
Giải:
ĐKXĐ của P là \(x\ge2\)và \(x\ne5\)
Phân tích tử:
x-5 = x-2-3
= (\(\sqrt{x-2}\)-\(\sqrt{3}\))(\(\sqrt{x-2}\)+\(\sqrt{3}\))
Xét P=\(\frac{\left(\sqrt{x-2}-\sqrt{3}\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{\sqrt{x-2}-\sqrt{3}}\)
= \(\sqrt{x-2}+\sqrt{3}\)
=> Min P= \(\sqrt{3}\)khi X=2.
Mình chỉ có thể tìm GTNN, còn GTLN thì mk chịu.
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)
a: \(P=\dfrac{\left[\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-4+2\left(\sqrt{x}+1\right)\right]}{x+4\sqrt{x}+4}\)
\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-4+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
c: Để |P|>P thì P<0
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay 0<x<1
\(A=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\left(x\ge0\right)\)
\(\Rightarrow A_{Min}=-\dfrac{1}{4}."="\Leftrightarrow x=\dfrac{1}{4}\left(TM\right)\)
đkxđ:x>=0
\(A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x+1}\right)^2}=\frac{x-2\sqrt{x}+1}{x+1}=1-\frac{2\sqrt{x}}{x+1}\)
vì \(\left(\sqrt{x}-1\right)^2=x-2\sqrt{x}+1>=0\Rightarrow x+1>=2\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x+1}< =\frac{x+1}{x+1}=1\Rightarrow1-\frac{2\sqrt{x}}{x+1}>=1-1=0\)
dấu = xảy ra khi x=1
vậy min A là 0 khi x-=1
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu