K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

12 tháng 11 2017
GTNN của A=1 <=>2< hoặc =x < hoặc =3
20 tháng 1 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

    \(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

   \(\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

    \(=2\)

Dấu "=" xảy ra <=> x = 2015

Vậy .......

29 tháng 1 2016

min của biểu thức:A=|x|+|8+x| là 8

Mình thử kiểu nào cũng ra 8!

 

29 tháng 1 2016

moi hoc lop 6 sao lam toan lop 7 duoc

5 tháng 2 2022

Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).

Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:

\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0