Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
Ta có :
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)
\(=1-\frac{2}{x^2+1}\)
Mà \(A_{min}\Rightarrow\frac{2}{x^2+1}_{max};x^2+1\in N^∗\)
\(\Rightarrow x^2+1_{min}\Rightarrow x^2+1=1\)
\(\Rightarrow x^2=0\Rightarrow x=0\)
Vậy \(A_{min}=\frac{-1}{1}=-1\forall x=0\)
Không chắc nha, em mới lớp 6 :3
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)
\(\text{Biểu thức }A\text{ nhận giá trị nhỏ nhất khi : }x^2+1\text{ nhận giá trị bé nhất}\)
\(\Rightarrow\text{ }x^2\text{ nhận giá trị bé nhất }\) \(\Rightarrow\text{ }x^2=1\)
\(\text{Vậy ta có : }\)
\(A=1-\frac{2}{x^2+1}=1-\frac{2}{1+1}=1-\frac{2}{2}=1-1=0\)
\(\text{Vậy giá trị nhỏ nhất của biểu thức }A\text{ là }1\)
A =|3x-4| + |5x-7| -x +2025
- Nếu x < \(\dfrac{4}{3}\):
\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\)
\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\)
Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\)
\(\Rightarrow\) \(-9x+2036>2024\)
\(\Rightarrow\) A \(>2024\) ( Loại)
Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\)
\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\)
= \(-3x+2028\)
Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\)
\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)
Nếu x :
\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\)
\(=7x+2014\)
Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\)
\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\)
\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) ( t/m)
Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{5}\)
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Ta có: |x-102|\(\ge\)0\(\forall\)x
|2-x|\(\ge\)0\(\forall\)x
|x-102|+|2-x|\(\ge\)0\(\forall\)x
A\(\ge\)0\(\forall\)x
Dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}\left|x-102\right|=0\\\left|2-x\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-102=0\\2-x=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=102\\x=2\end{cases}}\)
Vậy\(\hept{\begin{cases}x=102\\x=2\end{cases}}\)
Không biết bài làm của mình có đúng không nhưng mình khẳng định là (✿◠‿◠)(๛ČℌUƔÊŇ♥Ť❍Ą́Ňツ) làm sai bét nha !
Bài giải
Ta có : \(A=\left|x-102\right|+\left|2-x\right|\)
Áp dụng tính chất : \(\left|A\right|\ge A\) Ta có :
\(\left|x-102\right|\ge x-102\text{ Dấu " = " xảy ra khi }x-102\ge0\text{ }\Rightarrow\text{ }x\ge102\)
\(\left|2-x\right|\ge2-x\text{ Dấu " = " xảy ra khi }2-x\ge0\text{ }\Rightarrow\text{ }x\le2\)
\(\Rightarrow\text{ }\left|x-102\right|+\left|2-x\right|\ge x-102+2-x\)
\(\left|x-102\right|+\left|2-x\right|\ge-100\text{ Dấu " = " xảy ra khi }x\ge102\text{ và }x\le2\text{ Vô lí }\)
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
\(A=0,5-\left|x-3,5\right|\le0,5\\ A_{max}=0,5\Leftrightarrow x-3,5=0\Leftrightarrow x=3,5\\ B=-\left|1,4-x\right|2=-2\left|1,4-x\right|\le0\\ B_{min}=0\Leftrightarrow1,4-x=0\Leftrightarrow x=1,4\)