K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

\(N=x^2+y^2+xy+x+y\)

\(\Rightarrow N=\left(x^2+xy+y^2\right)+\left(x+y\right)\)

\(\Rightarrow N=\left(x+y\right)^2+\left(x+y\right)\)

\(\Rightarrow N=\left(x+y\right)\left(x+y+1\right)\)

29 tháng 8 2018

(a + b)2 = a2 + 2ab + b2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

9 tháng 1 2018

4M = 4x^2+4y^2-4xy+8x-16y-8072

= [(4x^2-4xy+y^2)-2.(2x+y).2+4]+(3y^2-12y+12)-8088

= [(2x-y)^2-2.(2x-y).2+4]+3.(y^2-4y+4)-8088

= (2x-y-2)^2+3.(y-2)^2-8088 >= -8088

=> M >= -2022

Dấu "=" xảy ra <=> 2x-y-2=0 và y-2=0 <=> x=y=2

Vậy GTNN của M = -2022 <=> x=y=2

Tk mk nha 

7 tháng 5 2018

4. x + y = 1

⇒ x = y - 1

Thế : x = y - 1 vào bài toán , ta có :

G = 2( y - 1)2 + y2

G = 2y2 - 4y + 2 + y2

G = 3y2 - 4y + 2

G = 3( y2 - 2.\(\dfrac{2}{3}\) + \(\dfrac{4}{9}\)) + 2 - \(\dfrac{4}{3}\)

G = 3( y - \(\dfrac{2}{3}\))2 + \(\dfrac{2}{3}\)\(\dfrac{2}{3}\) ∀x

⇒ GMIN = \(\dfrac{2}{3}\) ⇔ y = \(\dfrac{2}{3}\) ; x = 1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\)

Còn lại làm TT nhen...

7 tháng 5 2018

Ta có: x +y = 1

=> x = 1 - y

Thay vào ta được:

\(G=2\left(1-y\right)^2+y^2=2\left(1-2y+y^2\right)+y^2=2-4y+2y^2+y^2=2-4y+3y^2\)

\(=3y^2-4y+2=3\left(y^2-\dfrac{4}{3}y+\dfrac{2}{3}\right)=3\left(y^2-2.y.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{2}{9}\right)=3\left(y-\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

=> MinA = \(\dfrac{2}{3}\) khi y = \(\dfrac{2}{3}\)\(x=\dfrac{1}{3}\)

17 tháng 8 2015

= x^2 - 2xy + y^2 + 2x - 2y + x^2 -  2x + 12 

= ( x-  y)^2  + 2 ( x - y)  + x^2 - 2x + 1 + 11 

= ( x-  y)^2 + 2 ( x-  y ) + 1 + (x - 1 )^2 + 10 

= ( x - y + 1 )^2 + ( x- 1 )^2 + 10 

Vậy GTNN là 10 khi x - 1 = 0 và x - y + 1 =  0 

=> x = 1 và 2 - y  = 0 

=>x = 1 và y = 2 

 

23 tháng 11 2017

A=x2-xy +y2-2x -2y  suy ra 2. A = 2 x2-2xy +2y2-4x -4y = (x2-2xy +y2 ) + (x2-4x + 4) +( y2-4y+ 4) -8

2A = (x -y)2 + (x -2)2  + (y -2)2 -8 \(\ge\)-8  nên A \(\ge\)-4 

dấu "=" xảy ra khi và chỉ khi x -y =0; x -2 =0 và y -2 = 0 suy ra x =y =2

Vậy GTNN của A là -4 tại x =y = 2

23 tháng 11 2017

4A = 4x^2-4xy+4y^4-8x-8y

     = [ (4x^2-4xy+y^2)-2.(2x-y).2+4 ] + (3y^2-4y+4/3) - 16/3

     = (2x-y-2)^2 + 3.(y-2/3)^2 - 16/3 >= -16/3 => A >= -4/3

Dấu "=" xảy ra <=> 2x-y-2=0 và y-2/3 = 0

<=> x=4/3 và y=2/3

Vậy Min của A = -4/3  <=> x = 4/3 và y = 2/3

k mk nha