K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(A=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN của A = 4 khi và chỉ khi  \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}\)

24 tháng 5 2015

A = x2 - 2xy + 6y2 - 12x + 2y + 45

   = (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4

   = [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4

   = (x - y - 6)2 + 5(y - 1)2 + 4

Vì (x - y - 6)2 >= 0 với mọi x, y

   5(y2 - 1) >= 0 với mọi y

=> Amin = 4 <=> y = 1, x = 7

4 tháng 6 2016

\(A=x^2-2xy-12x+6y^2+2y+45\)

\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)

\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)

\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)

Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)

10 tháng 1 2017

\(P=x^2-2xy+6y^2-12x+3y+45\)

\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)

\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)

\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)

\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10

Vậy min P = 99/20 tại x = 69/10, y = 9/10

20 tháng 7 2018

A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)

=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

Dấu bằng xảy ra khi y=1 và x=5

2B=\(2x^2+2y^2-2xy-2x+2y+2\)

=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

=>B\(\ge\)0

27 tháng 7 2018

\(A=x^2-2xy+6y^2-12x+3y+45\)

\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)

\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)

\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)

\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)

Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)

\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)

27 tháng 7 2018

Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)

9 tháng 9 2017

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)

\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)

\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)

\(\left(x-y-6\right)^2\ge0\forall x,y\)

\(5.\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)

10 tháng 9 2017

thanks cậu nha

18 tháng 3 2018

Ta Có :

\(M=x^2+2y^2+2xy-2x-6y+2020\)

\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)

\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)

\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)

\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)

\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)

Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)

\(\left(y-2\right)^2\ge0\) với \(\forall y\)

\(\Rightarrow M\ge2015\) với \(\forall x,y\)

Vậy GTNN của M là 2015 đạt được khi

\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

tik mik nha !!!

2 tháng 12 2017

x2 + 2y2 + 2xy - 2x - 6y + 2020

= x2 + 2xy + y2 + y2 - 2x - 6y + 2020

= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016

= (x+y)2 + (y-z)2 - 2(x+y) + 2016

= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015

= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015

Dấu "=" xảy ra khi x+y-1=0 và y-2=0

(=) x=-1 y=2

Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2

Chúc bạn học tốt ^^

12 tháng 11 2017

ta có:

A=x^2-2xy+6y^2-12x+2y+54

=(x^2-2xy+y^2)-12x+12y+36+5y^2-10y+18

=(x-y)^2-(12x-12y)+6^2+5y^2-10y+5+13

=(x-y)^2-2*6*(x-y)+6^2+5(y^2-2y+1)+13

=(x-y-6)^2+5(y-1)^2+13

Vì (x-y-6)^2 \(\ge\)0 với \(\forall\)x,y

5(y-1)^2\(\ge\)0 với \(\forall\)y

=> A=(x-y-6)^2+5(y-1)^2+13\(\ge\)13với \(\forall\)x,y

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-6=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=7\\y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Vậy Gía trị nhỏ nhất của A là 13 khi x=7,y=1

nHỚ TICK