Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
\(A=\frac{x^2}{2}-\frac{x}{6}+3\)
\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)
\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)
\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)
b)\(B=x^4-4x^3+6x^2-4x+5\)
\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)
\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)
Dấu "=" xảy ra khi:\(x=0;-1;2\)
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
\(A=5+\frac{\left(x-2\right)^2}{x^2}\)
min\(A=5\), xảy ra tại \(x=2\)
Điều kiện xác định của A là x khác 0.
A=\(\frac{6x^2-4x+4}{x^2}=\frac{5x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=5+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\)=> \(5+\frac{\left(x-2\right)^2}{x^2}\ge5\)=> \(A\ge5\)
Với A= 5 => \(5+\frac{\left(x-2\right)^2}{x^2}=5\)=> \(\frac{\left(x-2\right)^2}{x^2}=0\)=> \(\left(x-2\right)^2=0\)=> \(x-2=0\)=> \(x=2\)
Vậy GTNN của A là 5 đạt được tại x=2.
Để F đạt min thì \(x^2-4x-4\) phải nhỏ nhất
Ta có :\(x^2-4x-4=x^2-4x+4-8 \)
\(=\left(x-2\right)^2-8\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-8\ge-8\forall x\)
Dấu" = " xảy ra
Làm tiếp cái dưới mik ấn nhầm :v
\(\Leftrightarrow x-2=0\Rightarrow x=2\)
Thay x=2 vào F \(\Rightarrow F=8\)
Vậy min F = 8 \(\Leftrightarrow x=2\)