K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Ta có: \(Q=\frac{(x+1)^2-x}{(x+1)^2}=1-\frac{x}{(x+1)^2}\)

\(Q=\frac{3}{4}+\frac{1}{4}-\frac{x}{(x+1)^2}=\frac{3}{4}+\frac{(x+1)^2-4x}{4(x+1)^2}\)

\(Q=\frac{3}{4}+\frac{(x-1)^2}{4(x+1)^2}\)

\((x-1)^2; (x+1)^2> 0, \forall x\in\mathbb{R}\neq -1\)

\(\Rightarrow \frac{(x-1)^2}{4(x+1)^2}\geq 0\Rightarrow Q\geq \frac{3}{4}\)

Vậy GTNN của Q là $\frac{3}{4}$. Dấu bằng xảy ra khi \(x=1\)

30 tháng 11 2018

ĐKXĐ : \(x\ne\left\{1;0\right\}\)

a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)

\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=1\cdot\dfrac{x^2+1}{2}\)

\(P=\dfrac{x^2+1}{2}\)

b) Vì \(x^2\ge0\forall x\)

\(\Rightarrow P\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Mà ĐKXĐ \(x\ne0\)

=> ... đến đây ko biết làm :v haha

AI BIẾT LÀM HỘ ĐI

Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)

5 tháng 6 2019

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2

15 tháng 4 2017

. P= x^2 +1/ x^2+ 2 +y^2+ 1/y^2 +2 (*) áp dụng bđt cosi cho các số dương x^2; y^2 và 1/x^2 và 1/y^2 được x^2+y^2 >= 2xy (1) và 1/X^2 +1/y^2 >=2/xy (2) thay vào (*) P >= 4+2xy+2/(xy) (**) Do x,y>0 áp dụng bđt cosi cho 2 số dương 2xy và 2/ (xy) ta được 2xy+2/(xy)>=2 căn (2xy . 2/(xy))=2 (3) thay trở lại (**) được P>= 4+2=6 Dấu bằng sảy ra khi dấu bằng ở (1)(2)(3) cùng đồng thời sảy ra tức là (1) x=y; (2) 1/x=1/y ;(3) xy=1/(xy) => x=y Vậy GTNN của biểu thức là 6 sảy ra khi x=y

16 tháng 4 2017

sai chỗ \(2xy+\dfrac{2}{xy}\ge2\sqrt[]{\dfrac{2}{xy}.2xy}=4\)

\(\Rightarrow A\ge4+4=8\)

21 tháng 2 2020

\(A=x\left(x+1\right)\left(x^2+x-4\right)\)

\(=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(x^2+x=k\)

Lúc đó \(A=k\left(k-4\right)\)

\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)

(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))

10 tháng 5 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

20 tháng 8 2018

giải giùm ik gấp lăm

a: \(M=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^2+1}{2}\)