Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
\(A=\frac{8x^2-24x+32}{8\left(x-1\right)^2}=\frac{x^2-10x+25+7\left(x-1\right)^2}{8\left(x-1\right)^2}=\frac{\left(x-5\right)^2}{8\left(x-1\right)^2}+\frac{7}{8}\ge\frac{7}{8}\forall x\)
Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)
Vậy GTNN của A là \(\frac{7}{8}\) khi x = 5
\(L=9\left|x-4\right|+\left|x-1\right|+x\)
\(L=\left|x-4\right|+\left|x-1\right|+\left|x-4\right|+x+7\left|x-4\right|\)
\(L=\left|4-x\right|+\left|x-1\right|+\left|4-x\right|+x+7\left|x-4\right|\)
Áp dụng liên tiếp 2 bất đẳng thức: \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) và \(\left|a\right|\ge a\) ta có:
\(L\ge\left|4-x+x-1\right|+4-x+x+7\left|x-4\right|\)
\(L\ge3+4+7\left|x-4\right|=7+\left|x-4\right|\ge7\)
Dấu "=" xảy ra khi tất cả các bđt đều xảy ra dấu "=",nghĩa là:
\(\left\{{}\begin{matrix}1\le x\le4\\x\le4\\x=4\end{matrix}\right.\Leftrightarrow x=4\).Vậy \(min_M=7\) khi \(x=4\)
\(A=x\left(x+1\right)\left(x^2+x-4\right)\)
\(=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=k\)
Lúc đó \(A=k\left(k-4\right)\)
\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)
(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x^2+x-2=0\)
Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))