\(M=9\left|x-4\right|+\left|x-1\right|+x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(L=9\left|x-4\right|+\left|x-1\right|+x\)

\(L=\left|x-4\right|+\left|x-1\right|+\left|x-4\right|+x+7\left|x-4\right|\)

\(L=\left|4-x\right|+\left|x-1\right|+\left|4-x\right|+x+7\left|x-4\right|\)

Áp dụng liên tiếp 2 bất đẳng thức: \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left|a\right|\ge a\) ta có:

\(L\ge\left|4-x+x-1\right|+4-x+x+7\left|x-4\right|\)

\(L\ge3+4+7\left|x-4\right|=7+\left|x-4\right|\ge7\)

Dấu "=" xảy ra khi tất cả các bđt đều xảy ra dấu "=",nghĩa là:

\(\left\{{}\begin{matrix}1\le x\le4\\x\le4\\x=4\end{matrix}\right.\Leftrightarrow x=4\).Vậy \(min_M=7\) khi \(x=4\)

20 tháng 3 2018

7+7|x-4|

5 tháng 6 2019

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2

21 tháng 2 2020

\(A=x\left(x+1\right)\left(x^2+x-4\right)\)

\(=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(x^2+x=k\)

Lúc đó \(A=k\left(k-4\right)\)

\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)

(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

21 tháng 2 2020

\(\Leftrightarrow A=\left(x^2+x\right)\left(x^2+x-4\right)\) Đặt x^2+x-a có

\(A=a\left(a-4\right)=a^2-4a\ge-4\)

Min A=-4 với a-2=0\(\Rightarrow x^2+x=2\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{3}{2}\\x+\frac{1}{2}=-\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)