Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2
minA = 2
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7
B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4
B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4
minB = -1/4
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4
C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥
≥ |x² + x + 1 + 12 - x² - x| = |13| = 13
minC = 13
đạt khi (x² + x +1) và (12 - x² - x) cùng dấu
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=>
{x² + x + 1 ≥ 0
{x² + x -12 ≤ 0
<=>
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3
tóm lại:
minC = 13 đạt khi -4 ≤ x ≤ 3
học tốt
Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)
\(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy Mmax = 2 khi x = 1
a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3
b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2
\(\left(x^2-2x\right)\left(x^2-2x+2\right)=\left(x^2-2x+1-1\right)\left(x^2-2x+1+1\right).\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(x-1\right)^2+1\right]\)
\(=\left(x-1\right)^4-1\ge0-1=-1\)
Vậy GTNN của biểu thức là -1
`P=(x^2+2x+2)/(x^2+2x+3)`
`=> P=(x^2+2x+3-1)/(x^2+2x+3)`
`=> P=1-1/(x^2+2x+3)`
Để `P_(min)` thì `1/(x^2+2x+3)` lớn nhất
`=> x^2+2x+3` nhỏ nhất
Ta có: `x^2+2x+3`
`=x^2+2x+1+2`
`= (x+1)^2+2≥2∀x`
`<=> 1/(x^2+2x+3) ≤1/2 ∀x`
`<=> P_(min)=1-1/2=1/2`
Vậy `P_(min)=1/2` khi `(x+1)^2+2=2 <=>x=-1`