K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

\(a)\) Ta có : 

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)\left(2-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}\Leftrightarrow}1\le x\le2}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A\) là \(1\) khi \(1\le x\le2\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

\(b)\) Ta có : 

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-8\right|\)

\(B=\left(\left|x-1\right|+\left|x-8\right|\right)+\left|x-2\right|\)

\(B=\left(\left|x-1\right|+\left|8-x\right|\right)+\left|x-2\right|\)

\(B\ge\left|x-1+8-x\right|+\left|x-2\right|=7+\left|x-2\right|\ge7\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)\left(8-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le8\\x=2\end{cases}}}\) ( thoả mãn ) 

Vậy GTNN của \(B\) là \(7\) khi \(x=2\)

Chúc bạn học tốt ~ 

3 tháng 4 2020

 A = x + | x |

có ; \(\left|x\right|\ge0\forall x\)

=> \(x+\left|x\right|\ge x\forall x\)

dấu ''='' xảy ra <=> x =0

vậy gtnn của A là x tại x=0

b) ta có : \(\left|x-3\right|\ge0\forall x\in Z\)

dấu ''='' xảy ra <=> x-3=0

=>  x=3

vậy gtnn  của bt B là 0 tại x=3

c) | x - 2 | + | x - 4 |

\(C=\left|x-2\right|+\left|x-4\right|\ge\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|\ge2\)

dấu ''='' xảy ra <=> \(\left(x-2\right)\left(4-x\right)\ge0\)

\(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

vậy gtnn của bt C là 2 tại x ={2;4}

14 tháng 6 2018

Điều cần nhớ: Một số mũ chẵn luôn lớn hơn hoặc bằng 0 với mọi x thuộc R 

                       Giá trị tuyệt đối luôn lớn hơn hoặc bằng 0

a)

A = x^2 + 4x + 5 

A = x^2 + 2x + 2x + 4 + 1

A = x(x + 2) + 2(x + 2) + 1

A = (x + 2)(x + 2) + 1

A = (x + 2)^2 + 1

Mà (x + 2)^2 >= 0 (Với mọi x thuộc R)

=> A = (x + 2)^2 + 1 >= 0 + 1 = 1 

=> Giá trị nhỏ nhất của A là 1 khi và chỉ khi (x + 2)^2 = 0 => x = -2 

b)

C = (x - 2)^2 + (y + 5)^10 + 2015

Mà:

(x - 2)^2 >= 0(Với mọi x thuộc R)

(y + 5)^10 >= 0(Với mọi y thuộc R)

=> C = (x - 2)^2 + (y + 5)^10 + 2015 >= 0 + 0 + 2015 = 2015

Vậy giá trị nhỏ nhát của C là 2015 khi và chỉ khi: (x - 2)^2 = 0 => x = 2 và (y + 5)^10 = 0 => y = -5

c)

\(D=x^2+|y-1|-7\)

Mà:

x^2 >= 0((Với mọi x thuộc R)

\(|y-1|\ge0\left(\forall y\in R\right)\)

=>   \(D=x^2+|y-1|-7\ge0+0-7=-7\)

Vậy giá trị nhỏ nhất của D là -7 khi x^2 = 0 => x = 0 và y = 1 

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

5 tháng 7 2016

A=x2-2x+5=x2-2x+1+4=(x-1)2+4

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Amin <=> \(\left(x-1\right)^2+4=4\)

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy Amin=4 khi x=1

17 tháng 7 2019

Ta có: x4 \(\ge\)\(\forall\)x

=> x4 + 5 \(\ge\)\(\forall\)x

=> (x4 + 5)2 \(\ge\)25 \(\forall\)x

Dấu "=" xảy ra <=> x = 0

Vậy Min của A = 25 tại x = 0

17 tháng 7 2019

\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)

Vì \(x^4\ge0\)và \(x^4+10>0\)

\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

\(KL:B_{min}=25\Leftrightarrow x=0\)

17 tháng 8 2018

ta có: f(x) = x4 + 2x2 - 2x2 - 6x - x4 + 2x2 - x3 + 8x -x3 - 2

f(x) = (x4 - x4) +  (2x2 + 2x2 -2x2) + (8x-6x) - (x3 + x3 ) - 2

f(x) = 2x2 + 2x - 2x3 - 2 = 2x2- 2x3 + 2x - 2

Để f(x) = 0

=> 2x2 - 2x3 + 2x - 2 = 0 

2x2.(x-1) + 2.(x-1) = 0

(x-1).(2x2+2) = 0

=> x - 1 = 0 => x = 1

2x2 + 2 = 0 => 2x2 = -2 => x2 = - 1 => không tìm được x

KL:...

6 tháng 2 2020

Dấu " [ " là giá trị tuyệt đối nhé